語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Continuum theory
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Continuum theory/ by Alejandro Illanes.
作者:
Illanes, Alejandro.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xvii, 239 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Analysis. -
電子資源:
https://doi.org/10.1007/978-3-031-91011-1
ISBN:
9783031910111
Continuum theory
Illanes, Alejandro.
Continuum theory
[electronic resource] /by Alejandro Illanes. - Cham :Springer Nature Switzerland :2025. - xvii, 239 p. :ill., digital ;24 cm. - Universitext,2191-6675. - Universitext..
Chapter 1. Introduction -- Chapter 2. Locally Connected Continua -- Chapter 3. CuttingWires and Bumping Boundaries -- Chapter 4. Indecomposable Continua -- Chapter 5. Characterizing Arcs and Circles -- Chapter 6. Finite Graphs -- Chapter 7. Dendroids -- Chapter 8. The Cantor Set -- Chapter 9. Hyperspaces of Continua -- Chapter 10. Models of Hyperspaces -- Chapter 11. Irreducible Continua -- Chapter 12. Unicoherence -- Chapter 13. The Fixed Point Property -- Chapter 14. Inverse Limits -- Chapter 15. Homogeneity of the Hilbert Cube -- Chapter 16. Absolute Retracts -- Chapter 17. Stronger Properties of the Pseudo-Arc.
This graduate textbook provides a natural and structured introduction to Continuum Theory, guiding readers from fundamental concepts to advanced topics. It covers classical results such as locally connected continua, indecomposable continua, arcs, circles, finite graphs, dendroids, and the relationship between the Cantor set and continua. The second half explores the theory of hyperspaces, presenting various models, their properties, and key theorems, while also highlighting elegant and lesser-known mathematical results. Designed for readers with an understanding of basic topology, this book serves as a valuable resource for PhD students and researchers in mathematics. It offers a rigorous and thorough approach, with detailed proofs that clarify complex arguments-especially regarding the intricate properties of the pseudo-arc. A wealth of exercises helps reinforce understanding and develop problem-solving skills. This book stands out for its depth and breadth, covering a range of topics. It provides a comprehensive study of hyperspace models, the homogeneity of the Hilbert cube, and the pseudo-arc, offering one of the few accessible and complete proofs of its unique properties. With its structured progression and careful exposition, this book is a valuable reference for anyone interested in continuum theory.
ISBN: 9783031910111
Standard No.: 10.1007/978-3-031-91011-1doiSubjects--Topical Terms:
669490
Analysis.
LC Class. No.: QA611.28
Dewey Class. No.: 514.32
Continuum theory
LDR
:02979nam a2200349 a 4500
001
1159691
003
DE-He213
005
20250625125921.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031910111
$q
(electronic bk.)
020
$a
9783031910104
$q
(paper)
024
7
$a
10.1007/978-3-031-91011-1
$2
doi
035
$a
978-3-031-91011-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA611.28
072
7
$a
PBP
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
072
7
$a
PBP
$2
thema
082
0 4
$a
514.32
$2
23
090
$a
QA611.28
$b
.I29 2025
100
1
$a
Illanes, Alejandro.
$3
1486981
245
1 0
$a
Continuum theory
$h
[electronic resource] /
$c
by Alejandro Illanes.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xvii, 239 p. :
$b
ill., digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Universitext,
$x
2191-6675
505
0
$a
Chapter 1. Introduction -- Chapter 2. Locally Connected Continua -- Chapter 3. CuttingWires and Bumping Boundaries -- Chapter 4. Indecomposable Continua -- Chapter 5. Characterizing Arcs and Circles -- Chapter 6. Finite Graphs -- Chapter 7. Dendroids -- Chapter 8. The Cantor Set -- Chapter 9. Hyperspaces of Continua -- Chapter 10. Models of Hyperspaces -- Chapter 11. Irreducible Continua -- Chapter 12. Unicoherence -- Chapter 13. The Fixed Point Property -- Chapter 14. Inverse Limits -- Chapter 15. Homogeneity of the Hilbert Cube -- Chapter 16. Absolute Retracts -- Chapter 17. Stronger Properties of the Pseudo-Arc.
520
$a
This graduate textbook provides a natural and structured introduction to Continuum Theory, guiding readers from fundamental concepts to advanced topics. It covers classical results such as locally connected continua, indecomposable continua, arcs, circles, finite graphs, dendroids, and the relationship between the Cantor set and continua. The second half explores the theory of hyperspaces, presenting various models, their properties, and key theorems, while also highlighting elegant and lesser-known mathematical results. Designed for readers with an understanding of basic topology, this book serves as a valuable resource for PhD students and researchers in mathematics. It offers a rigorous and thorough approach, with detailed proofs that clarify complex arguments-especially regarding the intricate properties of the pseudo-arc. A wealth of exercises helps reinforce understanding and develop problem-solving skills. This book stands out for its depth and breadth, covering a range of topics. It provides a comprehensive study of hyperspace models, the homogeneity of the Hilbert cube, and the pseudo-arc, offering one of the few accessible and complete proofs of its unique properties. With its structured progression and careful exposition, this book is a valuable reference for anyone interested in continuum theory.
650
2 4
$a
Analysis.
$3
669490
650
0
$a
Topology.
$3
633483
650
0
$a
Continuum (Mathematics)
$3
896076
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Universitext.
$3
881573
856
4 0
$u
https://doi.org/10.1007/978-3-031-91011-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入