語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Materials informatics.. I,. Methods
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Materials informatics./ edited by Kunal Roy, Arkaprava Banerjee.
其他題名:
Methods
其他作者:
Banerjee, Arkaprava.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xvii, 288 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-031-78736-2
ISBN:
9783031787362
Materials informatics.. I,. Methods
Materials informatics.
I,Methods[electronic resource] /Methodsedited by Kunal Roy, Arkaprava Banerjee. - Cham :Springer Nature Switzerland :2025. - xvii, 288 p. :ill. (some col.), digital ;24 cm. - Challenges and advances in computational chemistry and physics,v. 392542-4483 ;. - Challenges and advances in computational chemistry and physics ;v.14..
Part 1. Introduction -- Introduction to Materials Informatics -- Introduction to Cheminformatics for Predictive Modeling -- Introduction to machine learning for predictive modeling of organic materials -- Quantitative Structure-Property Relationships (QSPR) for Materials Science -- Part 2. Methods and Tools -- Quantitative Structure-Property Relationships (QSPR) and Machine Learning (ML) Models for Materials Science -- Optimising Materials Properties with Minimal Data: Lessons from Vanadium Catalyst Modelling -- In silico QSPR studies based on CDFT and IT descriptors -- Applications of quantitative read-across structure-property relationship (q-RASPR) modeling in the field of materials science -- Machine Learning algorithms for applications in Materials Science I -- Machine Learning algorithms for applications in Materials Science II -- Structure-property modeling of quantum-theoretic properties of benzenoid hydrocarbons by means of connection-related graphical descriptors -- Machine learning tools and Web services for Materials Science modelling.
This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.
ISBN: 9783031787362
Standard No.: 10.1007/978-3-031-78736-2doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: QD131
Dewey Class. No.: 620.110287
Materials informatics.. I,. Methods
LDR
:03156nam a2200349 a 4500
001
1160583
003
DE-He213
005
20250407170314.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031787362
$q
(electronic bk.)
020
$a
9783031787355
$q
(paper)
024
7
$a
10.1007/978-3-031-78736-2
$2
doi
035
$a
978-3-031-78736-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD131
072
7
$a
PNR
$2
bicssc
072
7
$a
SCI013070
$2
bisacsh
072
7
$a
PNRA
$2
thema
082
0 4
$a
620.110287
$2
23
090
$a
QD131
$b
.M425 2025
245
0 0
$a
Materials informatics.
$n
I,
$p
Methods
$h
[electronic resource] /
$c
edited by Kunal Roy, Arkaprava Banerjee.
246
3 0
$a
Methods
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xvii, 288 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Challenges and advances in computational chemistry and physics,
$x
2542-4483 ;
$v
v. 39
505
0
$a
Part 1. Introduction -- Introduction to Materials Informatics -- Introduction to Cheminformatics for Predictive Modeling -- Introduction to machine learning for predictive modeling of organic materials -- Quantitative Structure-Property Relationships (QSPR) for Materials Science -- Part 2. Methods and Tools -- Quantitative Structure-Property Relationships (QSPR) and Machine Learning (ML) Models for Materials Science -- Optimising Materials Properties with Minimal Data: Lessons from Vanadium Catalyst Modelling -- In silico QSPR studies based on CDFT and IT descriptors -- Applications of quantitative read-across structure-property relationship (q-RASPR) modeling in the field of materials science -- Machine Learning algorithms for applications in Materials Science I -- Machine Learning algorithms for applications in Materials Science II -- Structure-property modeling of quantum-theoretic properties of benzenoid hydrocarbons by means of connection-related graphical descriptors -- Machine learning tools and Web services for Materials Science modelling.
520
$a
This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Computational Design Of Materials.
$3
1401354
650
0
$a
Cheminformatics.
$3
805435
650
0
$a
Materials
$x
Analysis.
$3
596788
700
1
$a
Banerjee, Arkaprava.
$3
1487629
700
1
$a
Roy, Kunal.
$3
1142239
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Challenges and advances in computational chemistry and physics ;
$v
v.14.
$3
1022973
856
4 0
$u
https://doi.org/10.1007/978-3-031-78736-2
950
$a
Chemistry and Materials Science (SpringerNature-11644)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入