語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-valued logic for decision-making under uncertainty
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multi-valued logic for decision-making under uncertainty/ by Evgeny Kagan, Alexander Rybalov, Ronald Yager.
作者:
Kagan, Evgeny.
其他作者:
Yager, Ronald.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
viii, 194 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Probability and Statistics in Computer Science. -
電子資源:
https://doi.org/10.1007/978-3-031-74762-5
ISBN:
9783031747625
Multi-valued logic for decision-making under uncertainty
Kagan, Evgeny.
Multi-valued logic for decision-making under uncertainty
[electronic resource] /by Evgeny Kagan, Alexander Rybalov, Ronald Yager. - Cham :Springer Nature Switzerland :2025. - viii, 194 p. :ill. (some col.), digital ;24 cm. - Computer science foundations and applied logic,2731-5762. - Computer science foundations and applied logic..
1. Introduction -- 2. Background -- 3. Probability-generated multi-valued logic -- 4. Muli-valued logic algebra of subjective trusts -- 5. Algebra with non-commutative norms -- 6. Implementation of subjective trusts in control.
Multi-valued and fuzzy logics provide mathematical and computational tools for handling imperfect information and decision-making with rational collective reasoning and irrational individual judgements. The suggested implementation of multi-valued logics is based on the uninorm and absorbing norm with generating functions defined by probability distributions. Natural extensions of these logics result in non-commutative and non-distributive logics. In addition to Boolean truth values, these logics handle subjective truth and false values and model irrational decisions. Dynamics of decision-making are specified by the subjective Markov process and learning - by neural network with extended Tsetlin neurons. Application of the suggested methods is illustrated by modelling of irrational economic decisions and biased reasoning in the wisdom-of-the-crowd method, and by control of mobile robots and navigation of their groups. Topics and features: Bridges the gap between fuzzy and probability methods Includes examples in the field of machine-learning and robots' control Defines formal models of subjective judgements and decision-making Presents practical techniques for solving non-probabilistic decision-making problems Initiates further research in non-commutative and non-distributive logics The book forms a basis for theoretical studies and practice of decision-making under uncertainty and will be useful for computer scientists and mathematicians interested in multi-valued and fuzzy logic, as well as for engineers working in the field of data mining and data analysis. Dr. Evgeny Kagan is with the Faculty of Engineering, Ariel University, Israel; Dr. Alexander Rybalov is with the LAMBDA Laboratory, Tel-Aviv University, Israel; and Prof. Ronald Yager is with the Machine Learning Institute, Yona College, New York, USA.
ISBN: 9783031747625
Standard No.: 10.1007/978-3-031-74762-5doiSubjects--Topical Terms:
669886
Probability and Statistics in Computer Science.
LC Class. No.: QA9.45
Dewey Class. No.: 511.312
Multi-valued logic for decision-making under uncertainty
LDR
:03147nam a2200337 a 4500
001
1160646
003
DE-He213
005
20250217115400.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031747625
$q
(electronic bk.)
020
$a
9783031747618
$q
(paper)
024
7
$a
10.1007/978-3-031-74762-5
$2
doi
035
$a
978-3-031-74762-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA9.45
072
7
$a
UYA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
UYA
$2
thema
082
0 4
$a
511.312
$2
23
090
$a
QA9.45
$b
.K11 2025
100
1
$a
Kagan, Evgeny.
$3
1487705
245
1 0
$a
Multi-valued logic for decision-making under uncertainty
$h
[electronic resource] /
$c
by Evgeny Kagan, Alexander Rybalov, Ronald Yager.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
viii, 194 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Computer science foundations and applied logic,
$x
2731-5762
505
0
$a
1. Introduction -- 2. Background -- 3. Probability-generated multi-valued logic -- 4. Muli-valued logic algebra of subjective trusts -- 5. Algebra with non-commutative norms -- 6. Implementation of subjective trusts in control.
520
$a
Multi-valued and fuzzy logics provide mathematical and computational tools for handling imperfect information and decision-making with rational collective reasoning and irrational individual judgements. The suggested implementation of multi-valued logics is based on the uninorm and absorbing norm with generating functions defined by probability distributions. Natural extensions of these logics result in non-commutative and non-distributive logics. In addition to Boolean truth values, these logics handle subjective truth and false values and model irrational decisions. Dynamics of decision-making are specified by the subjective Markov process and learning - by neural network with extended Tsetlin neurons. Application of the suggested methods is illustrated by modelling of irrational economic decisions and biased reasoning in the wisdom-of-the-crowd method, and by control of mobile robots and navigation of their groups. Topics and features: Bridges the gap between fuzzy and probability methods Includes examples in the field of machine-learning and robots' control Defines formal models of subjective judgements and decision-making Presents practical techniques for solving non-probabilistic decision-making problems Initiates further research in non-commutative and non-distributive logics The book forms a basis for theoretical studies and practice of decision-making under uncertainty and will be useful for computer scientists and mathematicians interested in multi-valued and fuzzy logic, as well as for engineers working in the field of data mining and data analysis. Dr. Evgeny Kagan is with the Faculty of Engineering, Ariel University, Israel; Dr. Alexander Rybalov is with the LAMBDA Laboratory, Tel-Aviv University, Israel; and Prof. Ronald Yager is with the Machine Learning Institute, Yona College, New York, USA.
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
650
2 4
$a
Algebraic Logic.
$3
1394242
650
1 4
$a
Computer Science Logic and Foundations of Programming.
$3
1365757
650
0
$a
Multiple criteria decision making.
$3
574496
650
0
$a
Many-valued logic.
$3
598456
700
1
$a
Yager, Ronald.
$3
1079138
700
1
$a
Rybalov, Alexander.
$3
1487706
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Computer science foundations and applied logic.
$3
1454940
856
4 0
$u
https://doi.org/10.1007/978-3-031-74762-5
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入