語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical theory of compressible fluids on moving domains
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematical theory of compressible fluids on moving domains/ by Ondřej Kreml ... [et al.].
其他作者:
Kreml, Ondřej.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xv, 260 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Mathematical Physics. -
電子資源:
https://doi.org/10.1007/978-3-031-83324-3
ISBN:
9783031833243
Mathematical theory of compressible fluids on moving domains
Mathematical theory of compressible fluids on moving domains
[electronic resource] /by Ondřej Kreml ... [et al.]. - Cham :Springer Nature Switzerland :2025. - xv, 260 p. :ill., digital ;24 cm. - Lecture notes in mathematical fluid mechanics,2510-1382. - Lecture notes in mathematical fluid mechanics..
Preface -- Notation, definitions and basic concepts -- Equations of motion -- Barotropic viscous fluid with the Dirichlet boundary conditions -- Barotropic viscous fluid with slip boundary condition -- Weak-strong uniqueness -- Existence of strong solutions via energy methods -- Existence of strong solutions in the Lp - Lq framework -- The full system -- Index -- References.
This monograph presents the existence and properties of both weak and strong solutions to the problems of the flow of a compressible fluid in a domain whose motion is prescribed. Chapters build upon the research of Lions and Feireisl with regards to weak solutions to the compressible version of the Navier-Stokes system, and extend it to problems on moving domains. The authors also show the existence of strong solutions to the compressible Navier-Stokes system for either a small time interval or small data. The opening chapters introduce the notation, tools, and problems covered in the rest of the book, emphasizing pedagogy and accessibility throughout. Mathematical Theory of Compressible Fluids on Moving Domains will be suitable for graduate students and researchers interested in mathematical fluid mechanics.
ISBN: 9783031833243
Standard No.: 10.1007/978-3-031-83324-3doiSubjects--Topical Terms:
786661
Mathematical Physics.
LC Class. No.: QA901
Dewey Class. No.: 620.106
Mathematical theory of compressible fluids on moving domains
LDR
:02260nam a2200337 a 4500
001
1161530
003
DE-He213
005
20250227115232.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031833243
$q
(electronic bk.)
020
$a
9783031833236
$q
(paper)
024
7
$a
10.1007/978-3-031-83324-3
$2
doi
035
$a
978-3-031-83324-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA901
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
620.106
$2
23
090
$a
QA901
$b
.M426 2025
245
0 0
$a
Mathematical theory of compressible fluids on moving domains
$h
[electronic resource] /
$c
by Ondřej Kreml ... [et al.].
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
xv, 260 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematical fluid mechanics,
$x
2510-1382
505
0
$a
Preface -- Notation, definitions and basic concepts -- Equations of motion -- Barotropic viscous fluid with the Dirichlet boundary conditions -- Barotropic viscous fluid with slip boundary condition -- Weak-strong uniqueness -- Existence of strong solutions via energy methods -- Existence of strong solutions in the Lp - Lq framework -- The full system -- Index -- References.
520
$a
This monograph presents the existence and properties of both weak and strong solutions to the problems of the flow of a compressible fluid in a domain whose motion is prescribed. Chapters build upon the research of Lions and Feireisl with regards to weak solutions to the compressible version of the Navier-Stokes system, and extend it to problems on moving domains. The authors also show the existence of strong solutions to the compressible Navier-Stokes system for either a small time interval or small data. The opening chapters introduce the notation, tools, and problems covered in the rest of the book, emphasizing pedagogy and accessibility throughout. Mathematical Theory of Compressible Fluids on Moving Domains will be suitable for graduate students and researchers interested in mathematical fluid mechanics.
650
2 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Differential Equations.
$3
681826
650
1 4
$a
Functional Analysis.
$3
672166
650
0
$a
Fluid mechanics
$x
Mathematics.
$3
676222
700
1
$a
Kreml, Ondřej.
$3
1488461
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematical fluid mechanics.
$3
1488462
856
4 0
$u
https://doi.org/10.1007/978-3-031-83324-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入