語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Gaussian process models for quantitative finance
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Gaussian process models for quantitative finance/ by Michael Ludkovski, Jimmy Risk.
作者:
Ludkovski, Michael.
其他作者:
Risk, Jimmy.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xii, 138 p. :ill. (chiefly color), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Stochastic Systems and Control. -
電子資源:
https://doi.org/10.1007/978-3-031-80874-6
ISBN:
9783031808746
Gaussian process models for quantitative finance
Ludkovski, Michael.
Gaussian process models for quantitative finance
[electronic resource] /by Michael Ludkovski, Jimmy Risk. - Cham :Springer Nature Switzerland :2025. - xii, 138 p. :ill. (chiefly color), digital ;24 cm. - SpringerBriefs in quantitative finance,2192-7014. - SpringerBriefs in quantitative finance..
- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.
This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
ISBN: 9783031808746
Standard No.: 10.1007/978-3-031-80874-6doiSubjects--Topical Terms:
1392035
Stochastic Systems and Control.
LC Class. No.: HG106
Dewey Class. No.: 332.0151
Gaussian process models for quantitative finance
LDR
:02426nam a2200361 a 4500
001
1161547
003
DE-He213
005
20250307115223.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031808746
$q
(electronic bk.)
020
$a
9783031808739
$q
(paper)
024
7
$a
10.1007/978-3-031-80874-6
$2
doi
035
$a
978-3-031-80874-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG106
072
7
$a
PBW
$2
bicssc
072
7
$a
K
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBW
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
332.0151
$2
23
090
$a
HG106
$b
.L944 2025
100
1
$a
Ludkovski, Michael.
$e
editor.
$3
1263241
245
1 0
$a
Gaussian process models for quantitative finance
$h
[electronic resource] /
$c
by Michael Ludkovski, Jimmy Risk.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xii, 138 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in quantitative finance,
$x
2192-7014
505
0
$a
- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.
520
$a
This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
650
2 4
$a
Stochastic Systems and Control.
$3
1392035
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Stochastic Processes.
$3
1098688
650
1 4
$a
Mathematics in Business, Economics and Finance.
$3
1365935
650
0
$a
Gaussian processes.
$3
672507
650
0
$a
Finance
$x
Mathematical models.
$3
557653
700
1
$a
Risk, Jimmy.
$3
1488485
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in quantitative finance.
$3
1065981
856
4 0
$u
https://doi.org/10.1007/978-3-031-80874-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入