語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Incremental process discovery
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Incremental process discovery/ by Daniel Schuster.
作者:
Schuster, Daniel.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xvi, 367 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Computer Application in Administrative Data Processing. -
電子資源:
https://doi.org/10.1007/978-3-031-80565-3
ISBN:
9783031805653
Incremental process discovery
Schuster, Daniel.
Incremental process discovery
[electronic resource] /by Daniel Schuster. - Cham :Springer Nature Switzerland :2025. - xvi, 367 p. :ill. (some col.), digital ;24 cm. - Lecture notes in business information processing,5401865-1356 ;. - Lecture notes in business information processing ;134..
Opening and fundamentals -- incremental process discovery -- facilitating interaction with event data -- realization and application -- closure.
This book constitutes the revised version of the award-winning PhD dissertation written by the author at RWTH Aachen, Germany. It presents a framework for incremental process discovery that allows users to learn and refine process models from event data iteratively. Next to process discovery and event data handling, it also contributes to conformance checking, a further fundamental process mining task. Eventually, it presents Cortado, an open-source process mining software tool that implements the algorithms and techniques proposed in an integrated and comprehensive fashion. This part also includes a case study applying Cortado and, therefore, the various contributions of this thesis in a real-life scenario. In 2024, this PhD dissertation won the "Best Process Mining PhD Dissertation Award" by the IEEE Task Force for Process Mining, granted to outstanding PhD theses in this field.
ISBN: 9783031805653
Standard No.: 10.1007/978-3-031-80565-3doiSubjects--Topical Terms:
1365952
Computer Application in Administrative Data Processing.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Incremental process discovery
LDR
:02079nam a2200337 a 4500
001
1161749
003
DE-He213
005
20250408035230.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031805653
$q
(electronic bk.)
020
$a
9783031805646
$q
(paper)
024
7
$a
10.1007/978-3-031-80565-3
$2
doi
035
$a
978-3-031-80565-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
KJQ
$2
bicssc
072
7
$a
COM005030
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
S395 2025
100
1
$a
Schuster, Daniel.
$3
1488719
245
1 0
$a
Incremental process discovery
$h
[electronic resource] /
$c
by Daniel Schuster.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xvi, 367 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in business information processing,
$x
1865-1356 ;
$v
540
505
0
$a
Opening and fundamentals -- incremental process discovery -- facilitating interaction with event data -- realization and application -- closure.
520
$a
This book constitutes the revised version of the award-winning PhD dissertation written by the author at RWTH Aachen, Germany. It presents a framework for incremental process discovery that allows users to learn and refine process models from event data iteratively. Next to process discovery and event data handling, it also contributes to conformance checking, a further fundamental process mining task. Eventually, it presents Cortado, an open-source process mining software tool that implements the algorithms and techniques proposed in an integrated and comprehensive fashion. This part also includes a case study applying Cortado and, therefore, the various contributions of this thesis in a real-life scenario. In 2024, this PhD dissertation won the "Best Process Mining PhD Dissertation Award" by the IEEE Task Force for Process Mining, granted to outstanding PhD theses in this field.
650
2 4
$a
Computer Application in Administrative Data Processing.
$3
1365952
650
1 4
$a
Business Process Management.
$3
1066351
650
0
$a
Data mining.
$3
528622
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in business information processing ;
$v
134.
$3
882834
856
4 0
$u
https://doi.org/10.1007/978-3-031-80565-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入