語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data science in air quality monitoring
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data science in air quality monitoring/ by Hui Liu, Yanfei Li, Zhu Duan.
作者:
Liu, Hui.
其他作者:
Li, Yanfei.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xxii, 239 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Air quality - Measurement -
電子資源:
https://doi.org/10.1007/978-981-96-5777-3
ISBN:
9789819657773
Data science in air quality monitoring
Liu, Hui.
Data science in air quality monitoring
[electronic resource] /by Hui Liu, Yanfei Li, Zhu Duan. - Singapore :Springer Nature Singapore :2025. - xxii, 239 p. :ill., digital ;24 cm. - Engineering applications of computational methods,v. 232662-3374 ;. - Engineering applications of computational methods ;v. 15..
Chapter 1 Introduction -- Chapter 2 Data preprocessing in air quality monitoring -- Chapter 3 Data decomposition in air quality monitoring -- Chapter 4 Data identification in air quality monitoring -- Chapter 5 Data preprocessing in air quality monitoring -- Chapter 6 Data forecasting in air quality monitoring -- Chapter 7 Data interpolation in air quality monitoring.
This book presents a series of state-of-the-art methods for air quality monitoring in various engineering environment by using data science. In the book, the data-driven key techniques of the preprocessing, decomposition, identification, clustering, forecasting and interpolation of the air quality monitoring are explained in details with lots of experimental simulation. The book can provide important reference for the development of data science technologies in engineering air quality monitoring. The book can be used for students, engineers, scientists and managers in the fields of environmental engineering, atmospheric science, urban climate, civil engineering, traffic and vehicle engineering, etc.
ISBN: 9789819657773
Standard No.: 10.1007/978-981-96-5777-3doiSubjects--Topical Terms:
1489013
Air quality
--Measurement
LC Class. No.: TD890
Dewey Class. No.: 628.53
Data science in air quality monitoring
LDR
:02195nam a2200361 a 4500
001
1162145
003
DE-He213
005
20250603131217.0
006
m d
007
cr nn 008maaau
008
251029s2025 si s 0 eng d
020
$a
9789819657773
$q
(electronic bk.)
020
$a
9789819657766
$q
(paper)
024
7
$a
10.1007/978-981-96-5777-3
$2
doi
035
$a
978-981-96-5777-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TD890
072
7
$a
RN
$2
bicssc
072
7
$a
PBW
$2
bicssc
072
7
$a
SCI026000
$2
bisacsh
072
7
$a
RN
$2
thema
072
7
$a
PBW
$2
thema
082
0 4
$a
628.53
$2
23
090
$a
TD890
$b
.L783 2025
100
1
$a
Liu, Hui.
$3
1063190
245
1 0
$a
Data science in air quality monitoring
$h
[electronic resource] /
$c
by Hui Liu, Yanfei Li, Zhu Duan.
260
$a
Singapore :
$c
2025.
$b
Springer Nature Singapore :
$b
Imprint: Springer,
300
$a
xxii, 239 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Engineering applications of computational methods,
$x
2662-3374 ;
$v
v. 23
505
0
$a
Chapter 1 Introduction -- Chapter 2 Data preprocessing in air quality monitoring -- Chapter 3 Data decomposition in air quality monitoring -- Chapter 4 Data identification in air quality monitoring -- Chapter 5 Data preprocessing in air quality monitoring -- Chapter 6 Data forecasting in air quality monitoring -- Chapter 7 Data interpolation in air quality monitoring.
520
$a
This book presents a series of state-of-the-art methods for air quality monitoring in various engineering environment by using data science. In the book, the data-driven key techniques of the preprocessing, decomposition, identification, clustering, forecasting and interpolation of the air quality monitoring are explained in details with lots of experimental simulation. The book can provide important reference for the development of data science technologies in engineering air quality monitoring. The book can be used for students, engineers, scientists and managers in the fields of environmental engineering, atmospheric science, urban climate, civil engineering, traffic and vehicle engineering, etc.
650
0
$a
Air quality
$x
Measurement
$x
Data processing.
$3
1489013
650
0
$a
Data mining.
$3
528622
650
1 4
$a
Mathematical Applications in Environmental Science.
$3
1366053
650
2 4
$a
Environmental Monitoring.
$3
894984
650
2 4
$a
Data Science.
$3
1174436
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Pollution.
$3
565431
700
1
$a
Li, Yanfei.
$e
author.
$3
1402144
700
1
$a
Duan, Zhu.
$3
1489012
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Engineering applications of computational methods ;
$v
v. 15.
$3
1417349
856
4 0
$u
https://doi.org/10.1007/978-981-96-5777-3
950
$a
Earth and Environmental Science (SpringerNature-11646)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入