語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Connected sets in global bifurcation theory
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Connected sets in global bifurcation theory/ by Boris Buffoni, John Toland.
作者:
Buffoni, Boris.
其他作者:
Toland, John.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xii, 101 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Dynamical Systems. -
電子資源:
https://doi.org/10.1007/978-3-031-87051-4
ISBN:
9783031870514
Connected sets in global bifurcation theory
Buffoni, Boris.
Connected sets in global bifurcation theory
[electronic resource] /by Boris Buffoni, John Toland. - Cham :Springer Nature Switzerland :2025. - xii, 101 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
- 1. Introduction -- 2. Set Theory Foundations -- 3. Metric Spaces -- 4. Types of Connectedness -- 5. Congestion Points -- 6. Decomposable and Indecomposable Continua -- 7. Pathological Examples.
This book explores the topological properties of connected and path-connected solution sets for nonlinear equations in Banach spaces, focusing on the distinction between these concepts. Building on Rabinowitz's dichotomy, the authors introduce "congestion points"-where connected sets fail to be locally connected-and show their absence ensures path-connectedness. Through rigorous analysis and examples, the book provides new insights into global bifurcations. Structured into seven chapters, the book begins with an introduction to global bifurcation theory and foundational concepts in set theory and metric spaces. Subsequent chapters delve into connectedness, local connectedness, and congestion points, culminating in the construction of intricate examples that highlight the complexities of solution sets. The authors' careful selection of material and fluent writing style make this work a valuable resource for PhD students and experts in functional analysis and bifurcation theory.
ISBN: 9783031870514
Standard No.: 10.1007/978-3-031-87051-4doiSubjects--Topical Terms:
1366074
Dynamical Systems.
LC Class. No.: QA380
Dewey Class. No.: 515.35
Connected sets in global bifurcation theory
LDR
:02215nam a2200337 a 4500
001
1162500
003
DE-He213
005
20250429130209.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031870514
$q
(electronic bk.)
020
$a
9783031870507
$q
(paper)
024
7
$a
10.1007/978-3-031-87051-4
$2
doi
035
$a
978-3-031-87051-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA380
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.35
$2
23
090
$a
QA380
$b
.B929 2025
100
1
$a
Buffoni, Boris.
$3
1489297
245
1 0
$a
Connected sets in global bifurcation theory
$h
[electronic resource] /
$c
by Boris Buffoni, John Toland.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xii, 101 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
- 1. Introduction -- 2. Set Theory Foundations -- 3. Metric Spaces -- 4. Types of Connectedness -- 5. Congestion Points -- 6. Decomposable and Indecomposable Continua -- 7. Pathological Examples.
520
$a
This book explores the topological properties of connected and path-connected solution sets for nonlinear equations in Banach spaces, focusing on the distinction between these concepts. Building on Rabinowitz's dichotomy, the authors introduce "congestion points"-where connected sets fail to be locally connected-and show their absence ensures path-connectedness. Through rigorous analysis and examples, the book provides new insights into global bifurcations. Structured into seven chapters, the book begins with an introduction to global bifurcation theory and foundational concepts in set theory and metric spaces. Subsequent chapters delve into connectedness, local connectedness, and congestion points, culminating in the construction of intricate examples that highlight the complexities of solution sets. The authors' careful selection of material and fluent writing style make this work a valuable resource for PhD students and experts in functional analysis and bifurcation theory.
650
2 4
$a
Dynamical Systems.
$3
1366074
650
2 4
$a
Differential Equations.
$3
681826
650
2 4
$a
Topology.
$3
633483
650
1 4
$a
Functional Analysis.
$3
672166
650
0
$a
Bifurcation theory.
$3
527837
700
1
$a
Toland, John.
$e
author.
$3
1313877
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
883715
856
4 0
$u
https://doi.org/10.1007/978-3-031-87051-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入