語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Conjugacy in finite classical groups
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Conjugacy in finite classical groups/ by Giovanni De Franceschi, Martin W. Liebeck, Eamonn A. O'Brien.
作者:
De Franceschi, Giovanni.
其他作者:
O'Brien, Eamonn A.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xi, 176 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Group Theory and Generalizations. -
電子資源:
https://doi.org/10.1007/978-3-031-86461-2
ISBN:
9783031864612
Conjugacy in finite classical groups
De Franceschi, Giovanni.
Conjugacy in finite classical groups
[electronic resource] /by Giovanni De Franceschi, Martin W. Liebeck, Eamonn A. O'Brien. - Cham :Springer Nature Switzerland :2025. - xi, 176 p. :ill., digital ;24 cm. - Springer monographs in mathematics,2196-9922. - Springer monographs in mathematics..
- 1. Introduction and Background -- 2. General and Special Linear Groups -- 3. Preliminaries on Classical Groups -- 4. Unipotent Classes in Good Characteristic -- 5. Unipotent Classes in Bad Characteristic -- 6. Semisimple Classes -- 7. General Conjugacy Classes.
This book provides a comprehensive coverage of the theory of conjugacy in finite classical groups. Given such a classical group G, the three fundamental problems considered are the following: to list a representative for each conjugacy class of G; to describe the centralizer of each representative, by giving its group structure and a generating set; and to solve the conjugacy problem in G-namely, given two elements of G, establish whether they are conjugate, and if so, find a conjugating element. The book presents comprehensive theoretical solutions to all three problems, and uses these solutions to formulate practical algorithms. In parallel to the theoretical work, implementations of these algorithms have been developed in Magma. These form a critical component of various general algorithms in computational group theory-for example, computing character tables and solving conjugacy problems in arbitrary finite groups.
ISBN: 9783031864612
Standard No.: 10.1007/978-3-031-86461-2doiSubjects--Topical Terms:
672112
Group Theory and Generalizations.
LC Class. No.: QA171
Dewey Class. No.: 512.23
Conjugacy in finite classical groups
LDR
:02253nam a2200337 a 4500
001
1162512
003
DE-He213
005
20250506125956.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031864612
$q
(electronic bk.)
020
$a
9783031864605
$q
(paper)
024
7
$a
10.1007/978-3-031-86461-2
$2
doi
035
$a
978-3-031-86461-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA171
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBG
$2
thema
082
0 4
$a
512.23
$2
23
090
$a
QA171
$b
.D316 2025
100
1
$a
De Franceschi, Giovanni.
$3
1489310
245
1 0
$a
Conjugacy in finite classical groups
$h
[electronic resource] /
$c
by Giovanni De Franceschi, Martin W. Liebeck, Eamonn A. O'Brien.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xi, 176 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer monographs in mathematics,
$x
2196-9922
505
0
$a
- 1. Introduction and Background -- 2. General and Special Linear Groups -- 3. Preliminaries on Classical Groups -- 4. Unipotent Classes in Good Characteristic -- 5. Unipotent Classes in Bad Characteristic -- 6. Semisimple Classes -- 7. General Conjugacy Classes.
520
$a
This book provides a comprehensive coverage of the theory of conjugacy in finite classical groups. Given such a classical group G, the three fundamental problems considered are the following: to list a representative for each conjugacy class of G; to describe the centralizer of each representative, by giving its group structure and a generating set; and to solve the conjugacy problem in G-namely, given two elements of G, establish whether they are conjugate, and if so, find a conjugating element. The book presents comprehensive theoretical solutions to all three problems, and uses these solutions to formulate practical algorithms. In parallel to the theoretical work, implementations of these algorithms have been developed in Magma. These form a critical component of various general algorithms in computational group theory-for example, computing character tables and solving conjugacy problems in arbitrary finite groups.
650
1 4
$a
Group Theory and Generalizations.
$3
672112
650
0
$a
Finite groups.
$3
684448
700
1
$a
O'Brien, Eamonn A.
$3
1489312
700
1
$a
Liebeck, M. W.
$3
1489311
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Springer monographs in mathematics.
$3
882184
856
4 0
$u
https://doi.org/10.1007/978-3-031-86461-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入