語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The monodromy group
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The monodromy group/ by Henryk Żołądek.
作者:
Żołądek, Henryk.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xvi, 687 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Special Functions. -
電子資源:
https://doi.org/10.1007/978-3-031-91270-2
ISBN:
9783031912702
The monodromy group
Żołądek, Henryk.
The monodromy group
[electronic resource] /by Henryk Żołądek. - Second edition. - Cham :Springer Nature Switzerland :2025. - xvi, 687 p. :ill., digital ;24 cm. - Monografie matematyczne,v. 672297-0274 ;. - Monografie matematyczne ;new ser., v. 69..
Preface -- 1. Analytic Functions and Morse Theory -- 2. Normal Forms of Functions -- 3. Algebraic Topology of Manifolds -- 4. Topology and Monodromy of Functions -- 5. Integrals along Vanishing Cycles -- 6. Vector Fields and Abelian Integrals -- 7. Hodge Structures and Period Map -- 8. Linear Differential Systems -- 9. Holomorphic Foliations. Local Theory -- 10. Holomorphic Foliations. Global Aspects -- 11. The Galois Theory -- 12. Hypergeometric Functions -- Bibliography -- Index.
This book presents the monodromy group, underlining the unifying role it plays in a variety of theories and mathematical areas. In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations, one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations, there appear the Ecalle-Voronin-Martinet-Ramis moduli. Moreover, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. Readers will quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature. This second edition has been enlarged by several sections, presenting new results appeared since the first edition.
ISBN: 9783031912702
Standard No.: 10.1007/978-3-031-91270-2doiSubjects--Topical Terms:
672152
Special Functions.
LC Class. No.: QA246 / .Z65 2025
Dewey Class. No.: 512.2
The monodromy group
LDR
:02830nam a2200349 a 4500
001
1162520
003
DE-He213
005
20250511130333.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031912702
$q
(electronic bk.)
020
$a
9783031912696
$q
(paper)
024
7
$a
10.1007/978-3-031-91270-2
$2
doi
035
$a
978-3-031-91270-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA246
$b
.Z65 2025
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002000
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
512.2
$2
23
090
$a
QA246
$b
.Z86 2025
100
1
$a
Żołądek, Henryk.
$3
1489319
245
1 4
$a
The monodromy group
$h
[electronic resource] /
$c
by Henryk Żołądek.
250
$a
Second edition.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
xvi, 687 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Monografie matematyczne,
$x
2297-0274 ;
$v
v. 67
505
0
$a
Preface -- 1. Analytic Functions and Morse Theory -- 2. Normal Forms of Functions -- 3. Algebraic Topology of Manifolds -- 4. Topology and Monodromy of Functions -- 5. Integrals along Vanishing Cycles -- 6. Vector Fields and Abelian Integrals -- 7. Hodge Structures and Period Map -- 8. Linear Differential Systems -- 9. Holomorphic Foliations. Local Theory -- 10. Holomorphic Foliations. Global Aspects -- 11. The Galois Theory -- 12. Hypergeometric Functions -- Bibliography -- Index.
520
$a
This book presents the monodromy group, underlining the unifying role it plays in a variety of theories and mathematical areas. In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations, one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations, there appear the Ecalle-Voronin-Martinet-Ramis moduli. Moreover, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. Readers will quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature. This second edition has been enlarged by several sections, presenting new results appeared since the first edition.
650
2 4
$a
Special Functions.
$3
672152
650
2 4
$a
Differential Equations.
$3
681826
650
2 4
$a
Functions of a Complex Variable.
$3
672126
650
2 4
$a
Algebraic Topology.
$3
672209
650
1 4
$a
Algebra.
$2
gtt
$3
579870
650
0
$a
Riemann-Hilbert problems.
$3
1436465
650
0
$a
Monodromy groups.
$3
1112866
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Monografie matematyczne ;
$v
new ser., v. 69.
$3
882216
856
4 0
$u
https://doi.org/10.1007/978-3-031-91270-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入