語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Convexity in Newton's method
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Convexity in Newton's method/ by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón.
作者:
Ezquerro Fernández, José Antonio.
其他作者:
Hernández Verón, Miguel Ángel.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xii, 242 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Operator Theory. -
電子資源:
https://doi.org/10.1007/978-3-031-85754-6
ISBN:
9783031857546
Convexity in Newton's method
Ezquerro Fernández, José Antonio.
Convexity in Newton's method
[electronic resource] /by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón. - Cham :Springer Nature Switzerland :2025. - xii, 242 p. :ill., digital ;24 cm. - Frontiers in mathematics,1660-8054. - Frontiers in mathematics..
The degree of logarithmic convexity -- The Newton method and convexity -- Accelerations of the Newton method -- Newton-like methods with high order of convergence -- Optimization of the Chebyshev method.
This monograph examines a variety of iterative methods in Banach spaces with a focus on those obtained from the Newton method. Together with the authors' previous two volumes on the topic of the Newton method in Banach spaces, this third volume significantly extends Kantorovich's initial theory. It accomplishes this by emphasizing the influence of the convexity of the function involved, showing how improved iterative methods can be obtained that build upon those introduced in the previous two volumes. Each chapter presents theoretical results and illustrates them with applications to nonlinear equations, including scalar equations, integral equations, boundary value problems, and more. Convexity in Newton's Method will appeal to researchers interested in the theory of the Newton method as well as other iterative methods in Banach spaces.
ISBN: 9783031857546
Standard No.: 10.1007/978-3-031-85754-6doiSubjects--Topical Terms:
672127
Operator Theory.
LC Class. No.: QA639.5
Dewey Class. No.: 515.882
Convexity in Newton's method
LDR
:02110nam a2200337 a 4500
001
1162523
003
DE-He213
005
20250512130254.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031857546
$q
(electronic bk.)
020
$a
9783031857539
$q
(paper)
024
7
$a
10.1007/978-3-031-85754-6
$2
doi
035
$a
978-3-031-85754-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA639.5
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.882
$2
23
090
$a
QA639.5
$b
.E99 2025
100
1
$a
Ezquerro Fernández, José Antonio.
$3
1489323
245
1 0
$a
Convexity in Newton's method
$h
[electronic resource] /
$c
by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
xii, 242 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Frontiers in mathematics,
$x
1660-8054
505
0
$a
The degree of logarithmic convexity -- The Newton method and convexity -- Accelerations of the Newton method -- Newton-like methods with high order of convergence -- Optimization of the Chebyshev method.
520
$a
This monograph examines a variety of iterative methods in Banach spaces with a focus on those obtained from the Newton method. Together with the authors' previous two volumes on the topic of the Newton method in Banach spaces, this third volume significantly extends Kantorovich's initial theory. It accomplishes this by emphasizing the influence of the convexity of the function involved, showing how improved iterative methods can be obtained that build upon those introduced in the previous two volumes. Each chapter presents theoretical results and illustrates them with applications to nonlinear equations, including scalar equations, integral equations, boundary value problems, and more. Convexity in Newton's Method will appeal to researchers interested in the theory of the Newton method as well as other iterative methods in Banach spaces.
650
2 4
$a
Operator Theory.
$3
672127
650
1 4
$a
Functional Analysis.
$3
672166
650
0
$a
Newton-Raphson method.
$3
528526
650
0
$a
Convex domains.
$3
527885
700
1
$a
Hernández Verón, Miguel Ángel.
$3
1489324
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Frontiers in mathematics.
$3
888364
856
4 0
$u
https://doi.org/10.1007/978-3-031-85754-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入