語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Cultural data science = an introduction to R /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Cultural data science/ by Harald Klinke.
其他題名:
an introduction to R /
作者:
Klinke, Harald.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xiii, 161 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Art History. -
電子資源:
https://doi.org/10.1007/978-3-031-88130-5
ISBN:
9783031881305
Cultural data science = an introduction to R /
Klinke, Harald.
Cultural data science
an introduction to R /[electronic resource] :by Harald Klinke. - Cham :Springer Nature Switzerland :2025. - xiii, 161 p. :ill., digital ;24 cm. - Quantitative methods in the humanities and social sciences,2199-0964. - Quantitative methods in the humanities and social sciences..
Chapter 1 Introduction -- Chapter 2 Setting up R -- Chapter 3 First Steps -- Chapter 4 First Data -- Chapter 5 Exploring Data -- Chapter 6 Compare data -- Chapter 7 Case Study 1: Picasso from creation to acquisition -- Chapter 8 Subdividing and combining data sets -- Chapter 9 Case Study 2: Photography Aspect Ratios -- Chapter 10 Case Study 3: Overview of the MNBAQ Dataset -- Chapter 11 Stacked bar plot -- Chapter 12 Working with Images -- Chapter 13 Case Study: Image plot -- Chapter 14 Dimensions -- Chapter 15 Network Visualizations -- Chapter 16 Image Analysis -- Chapter 17 Cloud Computing -- Chapter 18 Epilogue: The Future of Cultural Data Science.
This book addresses growing demand in the visual humanities for foundational knowledge in data analysis, image processing, and artificial intelligence. Intended for readers without prior technical knowledge, its eighteen chapters introduce key concepts in data science through examples from art history, visual computing, and cloud technologies. For advanced readers, it explores how digital methods enhance our understanding of our cultural past. Focusing on image-based humanities research, the book demonstrates practical applications using open source software such as R, RStudio, and ImageMagick, along with open data sets from institutions like the MoMA, the Met, and the Rijksmuseum. Ideal for students, researchers, and professionals in art history, digital humanities, and museum studies, this book bridges the gap between technology and the humanities, making complex digital methods accessible to a broad audience.
ISBN: 9783031881305
Standard No.: 10.1007/978-3-031-88130-5doiSubjects--Topical Terms:
1365919
Art History.
LC Class. No.: NX260
Dewey Class. No.: 700.285
Cultural data science = an introduction to R /
LDR
:02628nam a2200337 a 4500
001
1162527
003
DE-He213
005
20250516130257.0
006
m d
007
cr nn 008maaau
008
251029s2025 sz s 0 eng d
020
$a
9783031881305
$q
(electronic bk.)
020
$a
9783031881299
$q
(paper)
024
7
$a
10.1007/978-3-031-88130-5
$2
doi
035
$a
978-3-031-88130-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
NX260
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
700.285
$2
23
090
$a
NX260
$b
.K65 2025
100
1
$a
Klinke, Harald.
$3
1489328
245
1 0
$a
Cultural data science
$h
[electronic resource] :
$b
an introduction to R /
$c
by Harald Klinke.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xiii, 161 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Quantitative methods in the humanities and social sciences,
$x
2199-0964
505
0
$a
Chapter 1 Introduction -- Chapter 2 Setting up R -- Chapter 3 First Steps -- Chapter 4 First Data -- Chapter 5 Exploring Data -- Chapter 6 Compare data -- Chapter 7 Case Study 1: Picasso from creation to acquisition -- Chapter 8 Subdividing and combining data sets -- Chapter 9 Case Study 2: Photography Aspect Ratios -- Chapter 10 Case Study 3: Overview of the MNBAQ Dataset -- Chapter 11 Stacked bar plot -- Chapter 12 Working with Images -- Chapter 13 Case Study: Image plot -- Chapter 14 Dimensions -- Chapter 15 Network Visualizations -- Chapter 16 Image Analysis -- Chapter 17 Cloud Computing -- Chapter 18 Epilogue: The Future of Cultural Data Science.
520
$a
This book addresses growing demand in the visual humanities for foundational knowledge in data analysis, image processing, and artificial intelligence. Intended for readers without prior technical knowledge, its eighteen chapters introduce key concepts in data science through examples from art history, visual computing, and cloud technologies. For advanced readers, it explores how digital methods enhance our understanding of our cultural past. Focusing on image-based humanities research, the book demonstrates practical applications using open source software such as R, RStudio, and ImageMagick, along with open data sets from institutions like the MoMA, the Met, and the Rijksmuseum. Ideal for students, researchers, and professionals in art history, digital humanities, and museum studies, this book bridges the gap between technology and the humanities, making complex digital methods accessible to a broad audience.
650
2 4
$a
Art History.
$3
1365919
650
2 4
$a
Data and Information Visualization.
$3
1366914
650
1 4
$a
Data Analysis and Big Data.
$3
1366136
650
0
$a
R (Computer program language)
$3
679069
650
0
$a
Digital humanities
$x
Data processing.
$3
1143133
650
0
$a
Arts
$x
Data processing.
$3
1489329
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Quantitative methods in the humanities and social sciences.
$3
1069840
856
4 0
$u
https://doi.org/10.1007/978-3-031-88130-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入