語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Artificial intelligence for materials informatics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Artificial intelligence for materials informatics/ edited by S. Sachin Kumar ... [et al.].
其他作者:
Sachin Kumar, S.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xii, 247 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Materials science - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-89983-6
ISBN:
9783031899836
Artificial intelligence for materials informatics
Artificial intelligence for materials informatics
[electronic resource] /edited by S. Sachin Kumar ... [et al.]. - Cham :Springer Nature Switzerland :2025. - xii, 247 p. :ill. (some col.), digital ;24 cm. - Studies in computational intelligence,v. 12131860-9503 ;. - Studies in computational intelligence ;v. 50. .
Topological indices-based vector representation of graphs -- Toxicity Prediction Using Convolutional Neural Networks: A Study of Deep Learning Approach -- AI and ML in Polymer Science: Enhancing Material Informatics through Predictive Modelling -- Transforming Carbon-Based Material: The Role of AI and ML Regression Techniques in Material Science -- Physics Informed Neural Networks: Fundamentals & Application to Phase Field Models -- Application of AI to help leverage Density Functional Theory computations in Materials Informatics -- XAI Approaches in Genetic Biomaterial Analysis -- AI-Driven Robotic Solutions in Material Engineering -- Implications of high-entropy energy materials in healthcare, environment and agriculture, along with the applications of artificial intelligence -- Advancements in Agricultural Materials: Machine Learning Models for Precision Fertilizer Prediction.
This comprehensive book explores the transformative impact of AI on materials informatics, delving into machine learning/deep learning, and material knowledge representation. Embracing the transformative power of artificial intelligence (AI), the field of materials informatics has witnessed a remarkable revolution in its methodology and applications. AI has revolutionized the field of materials informatics, enabling researchers to discover, design, and optimize materials with enhanced properties at an accelerated pace. It showcases how AI is accelerating materials discovery, property prediction, providing case studies, and a comprehensive bibliography for further exploration. This essential resource equips researchers, scientists, and engineers with the knowledge and tools to harness the power of AI for groundbreaking advancements in materials science.
ISBN: 9783031899836
Standard No.: 10.1007/978-3-031-89983-6doiSubjects--Topical Terms:
915248
Materials science
--Data processing.
LC Class. No.: TA404.23
Dewey Class. No.: 620.11028563
Artificial intelligence for materials informatics
LDR
:02852nam a2200337 a 4500
001
1166926
003
DE-He213
005
20250729130235.0
006
m d
007
cr nn 008maaau
008
251217s2025 sz s 0 eng d
020
$a
9783031899836
$q
(electronic bk.)
020
$a
9783031899829
$q
(paper)
024
7
$a
10.1007/978-3-031-89983-6
$2
doi
035
$a
978-3-031-89983-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA404.23
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
620.11028563
$2
23
090
$a
TA404.23
$b
.A791 2025
245
0 0
$a
Artificial intelligence for materials informatics
$h
[electronic resource] /
$c
edited by S. Sachin Kumar ... [et al.].
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xii, 247 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-9503 ;
$v
v. 1213
505
0
$a
Topological indices-based vector representation of graphs -- Toxicity Prediction Using Convolutional Neural Networks: A Study of Deep Learning Approach -- AI and ML in Polymer Science: Enhancing Material Informatics through Predictive Modelling -- Transforming Carbon-Based Material: The Role of AI and ML Regression Techniques in Material Science -- Physics Informed Neural Networks: Fundamentals & Application to Phase Field Models -- Application of AI to help leverage Density Functional Theory computations in Materials Informatics -- XAI Approaches in Genetic Biomaterial Analysis -- AI-Driven Robotic Solutions in Material Engineering -- Implications of high-entropy energy materials in healthcare, environment and agriculture, along with the applications of artificial intelligence -- Advancements in Agricultural Materials: Machine Learning Models for Precision Fertilizer Prediction.
520
$a
This comprehensive book explores the transformative impact of AI on materials informatics, delving into machine learning/deep learning, and material knowledge representation. Embracing the transformative power of artificial intelligence (AI), the field of materials informatics has witnessed a remarkable revolution in its methodology and applications. AI has revolutionized the field of materials informatics, enabling researchers to discover, design, and optimize materials with enhanced properties at an accelerated pace. It showcases how AI is accelerating materials discovery, property prediction, providing case studies, and a comprehensive bibliography for further exploration. This essential resource equips researchers, scientists, and engineers with the knowledge and tools to harness the power of AI for groundbreaking advancements in materials science.
650
0
$a
Materials science
$x
Data processing.
$3
915248
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Materials Science.
$3
671087
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Sachin Kumar, S.
$3
1495725
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v. 50.
$3
720500
$3
770436
856
4 0
$u
https://doi.org/10.1007/978-3-031-89983-6
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入