語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Variational and information flows in machine learning and optimal transport
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Variational and information flows in machine learning and optimal transport/ by Wuchen Li ... [et al.].
其他作者:
Li, Wuchen.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xiv, 254 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Stochastic processes. -
電子資源:
https://doi.org/10.1007/978-3-031-92731-7
ISBN:
9783031927317
Variational and information flows in machine learning and optimal transport
Variational and information flows in machine learning and optimal transport
[electronic resource] /by Wuchen Li ... [et al.]. - Cham :Springer Nature Switzerland :2025. - xiv, 254 p. :ill. (some col.), digital ;24 cm. - Oberwolfach seminars,v. 562296-5041 ;. - Oberwolfach seminars ;v.47..
- 1. A Dynamic Perspective of Optimal Transport -- 2. A Geometric Perspective on Diffeomorphic and Optimal Transport Flows and Their Applications -- 3. Wasserstein Dynamics in Mathematical Data Sciences -- 4. Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans.
This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on "Computational Variational Flows in Machine Learning and Optimal Transport". Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.
ISBN: 9783031927317
Standard No.: 10.1007/978-3-031-92731-7doiSubjects--Topical Terms:
528256
Stochastic processes.
LC Class. No.: QA274
Dewey Class. No.: 519.23
Variational and information flows in machine learning and optimal transport
LDR
:02159nam a2200337 a 4500
001
1166945
003
DE-He213
005
20250718130247.0
006
m d
007
cr nn 008maaau
008
251217s2025 sz s 0 eng d
020
$a
9783031927317
$q
(electronic bk.)
020
$a
9783031927300
$q
(paper)
024
7
$a
10.1007/978-3-031-92731-7
$2
doi
035
$a
978-3-031-92731-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
519.23
$2
23
090
$a
QA274
$b
.V299 2025
245
0 0
$a
Variational and information flows in machine learning and optimal transport
$h
[electronic resource] /
$c
by Wuchen Li ... [et al.].
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
xiv, 254 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Oberwolfach seminars,
$x
2296-5041 ;
$v
v. 56
505
0
$a
- 1. A Dynamic Perspective of Optimal Transport -- 2. A Geometric Perspective on Diffeomorphic and Optimal Transport Flows and Their Applications -- 3. Wasserstein Dynamics in Mathematical Data Sciences -- 4. Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans.
520
$a
This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on "Computational Variational Flows in Machine Learning and Optimal Transport". Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.
650
0
$a
Stochastic processes.
$3
528256
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Machine learning
$x
Mathematics.
$3
1340126
650
1 4
$a
Differential Equations.
$3
681826
650
2 4
$a
Calculus of Variations and Optimization.
$3
1366302
700
1
$a
Li, Wuchen.
$3
1495743
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Oberwolfach seminars ;
$v
v.47.
$3
1172326
856
4 0
$u
https://doi.org/10.1007/978-3-031-92731-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入