語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The geometry and topology of coxeter groups
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The geometry and topology of coxeter groups/ by Michael W. Davis.
作者:
Davis, Michael.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xxiii, 582 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer Nature eBook
標題:
Coxeter groups. -
電子資源:
https://doi.org/10.1007/978-3-031-91303-7
ISBN:
9783031913037
The geometry and topology of coxeter groups
Davis, Michael.
The geometry and topology of coxeter groups
[electronic resource] /by Michael W. Davis. - Second edition. - Cham :Springer Nature Switzerland :2025. - xxiii, 582 p. :ill. (some col.), digital ;24 cm. - Springer monographs in mathematics,2196-9922. - Springer monographs in mathematics..
Chapter 1. Introduction and preview -- Chapter 2. Some basic notions in geometric group theory -- Chapter 3. Coxeter groups -- Chapter 4. More combinatorics of Coxeter groups -- Chapter 5. The basic construction -- Chapter 6. Geometric reflection groups -- Chapter 7. The complex E -- Chapter 8. The algebraic topology of U and of E -- Chapter 9. The fundamental group and the fundamental group at infinity -- Chapter 10. Actions on manifolds -- Chapter 11. The reflection group trick -- Chapter 12. E is CAT(0) -- Chapter 13. Rigidity -- Chapter 14. Free quotients and surface subgroups -- Chapter 15. Another look at (co)homology -- Chapter 16. The Euler characteristic -- Chapter 17. Growth series -- Chapter 18. Artin Groups -- Chapter 19. L2-Betti numbers of Artin groups -- Chapter 20. Buildings -- Chapter 21. Hecke - von Neumann algebras -- Chapter 22. Weighted L2- (co)homology.
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf's theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov's theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
ISBN: 9783031913037
Standard No.: 10.1007/978-3-031-91303-7doiSubjects--Topical Terms:
672564
Coxeter groups.
LC Class. No.: QA183
Dewey Class. No.: 512.2
The geometry and topology of coxeter groups
LDR
:02717nam a2200349 a 4500
001
1166961
003
DE-He213
005
20250731130734.0
006
m d
007
cr nn 008maaau
008
251217s2025 sz s 0 eng d
020
$a
9783031913037
$q
(electronic bk.)
020
$a
9783031913020
$q
(paper)
024
7
$a
10.1007/978-3-031-91303-7
$2
doi
035
$a
978-3-031-91303-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA183
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBG
$2
thema
082
0 4
$a
512.2
$2
23
090
$a
QA183
$b
.D263 2025
100
1
$a
Davis, Michael.
$3
1379683
245
1 4
$a
The geometry and topology of coxeter groups
$h
[electronic resource] /
$c
by Michael W. Davis.
250
$a
Second edition.
260
$a
Cham :
$c
2025.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xxiii, 582 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer monographs in mathematics,
$x
2196-9922
505
0
$a
Chapter 1. Introduction and preview -- Chapter 2. Some basic notions in geometric group theory -- Chapter 3. Coxeter groups -- Chapter 4. More combinatorics of Coxeter groups -- Chapter 5. The basic construction -- Chapter 6. Geometric reflection groups -- Chapter 7. The complex E -- Chapter 8. The algebraic topology of U and of E -- Chapter 9. The fundamental group and the fundamental group at infinity -- Chapter 10. Actions on manifolds -- Chapter 11. The reflection group trick -- Chapter 12. E is CAT(0) -- Chapter 13. Rigidity -- Chapter 14. Free quotients and surface subgroups -- Chapter 15. Another look at (co)homology -- Chapter 16. The Euler characteristic -- Chapter 17. Growth series -- Chapter 18. Artin Groups -- Chapter 19. L2-Betti numbers of Artin groups -- Chapter 20. Buildings -- Chapter 21. Hecke - von Neumann algebras -- Chapter 22. Weighted L2- (co)homology.
520
$a
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf's theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov's theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
650
0
$a
Coxeter groups.
$3
672564
650
0
$a
Geometric group theory.
$3
1198053
650
1 4
$a
Group Theory and Generalizations.
$3
672112
650
2 4
$a
Manifolds and Cell Complexes.
$3
1366170
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Springer monographs in mathematics.
$3
882184
856
4 0
$u
https://doi.org/10.1007/978-3-031-91303-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入