Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
以利潤為主要考量之多重最小支持度量化關聯規則 = Mining Quan...
~
鄭印良
以利潤為主要考量之多重最小支持度量化關聯規則 = Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
Record Type:
Language materials, printed : monographic
Paralel Title:
Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
Author:
鄭印良,
Secondary Intellectual Responsibility:
楊達立,
Secondary Intellectual Responsibility:
國立虎尾科技大學
Place of Publication:
雲林縣
Published:
國立虎尾科技大學;
Year of Publication:
民96[2007]
Edition:
初版
Description:
50面圖,表 : 30公分;
Subject:
ABC理論
Subject:
ACB approach
Online resource:
http://140.130.12.251/ETD-db/ETD-search-c/view_etd?URN=etd-0703107-213708
Summary:
一般關聯規則的特性主要是考慮商品在交易中的關聯性,使得與重要商品相關的關聯規則能被挖掘出來;而挖掘量化關聯規則的主要目的,則是從交易資料庫中找出大部分的客戶購買了哪些數量的商品,也會同時購買哪些數量的其他商品。但是,一般關聯規則沒有考慮商品被購買的數量,而量化關聯規則也沒有考慮到商品本身的利潤,因此如何同時考慮商品本身的利潤與其被購買的數量,成為本研究的議題。本論文主要應用分割演算法(Partition algorithm)將其資料量化,之後建立成P-tree的結構,再加上ABC理論及多支持度的概念,提出了一個新PMSFP-tree(Profit and Multiple minimum Supports Frequent Patterns tree)結構與PMSQFP-growth(Profit and Multiple minimum Supports QFP-growth)演算法。 Association rules takes an important role in Data Mining. By applying this technique, the relations between the data in a transaction database can be found, and then managers utilize the explored information to make decisions.The traditional association rules technique mostly focuses on the amount of trades, so that the goods with high profits and low sales volume will be neglected. This paper proposes a method using the concept of P-tree(Patterns tree), CFP-growth and QFP-growth. Subsequently, the common stock-checking method, ABC, is utilized to classify the goods so as to those goods with high profits and high support will be remained. Finally, the explored information will be much expected to conform to managers.By combining the concepts as mentioned above, a novel technique, PMSFP-tree (Profit and Multiple minimum Supports Frequent Patterns tree) and PMSQFP-growth (Profit and Multiple minimum Supports QFP-growth) is proposed in this paper. Experimental results demonstrate that our method can improve the drawbacks of CFP-growth. Besides, by taking account of trade profits, the mined results will be much respond to its actual facts.
以利潤為主要考量之多重最小支持度量化關聯規則 = Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
鄭, 印良
以利潤為主要考量之多重最小支持度量化關聯規則
= Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits / 鄭印良撰 - 初版. - 雲林縣 : 國立虎尾科技大學, 民96[2007]. - 50面 ; 圖,表 ; 30公分.
ABC理論ACB approach
楊, 達立
以利潤為主要考量之多重最小支持度量化關聯規則 = Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
LDR
:03103nam0 2200253 450
001
540381
010
0
$b
平裝
100
$a
20090420h akaa0chia50020302ba
101
0
$a
chi
102
$a
cw
105
$a
ak am 000yy
200
1
$a
以利潤為主要考量之多重最小支持度量化關聯規則
$d
Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
$f
鄭印良撰
205
$a
初版
210
$a
雲林縣
$d
民96[2007]
$c
國立虎尾科技大學
215
0
$a
50面
$c
圖,表
$d
30公分
314
$a
指導教授:楊達立
328
$a
碩士論文--國立虎尾科技大學資訊管理研究所
330
$a
一般關聯規則的特性主要是考慮商品在交易中的關聯性,使得與重要商品相關的關聯規則能被挖掘出來;而挖掘量化關聯規則的主要目的,則是從交易資料庫中找出大部分的客戶購買了哪些數量的商品,也會同時購買哪些數量的其他商品。但是,一般關聯規則沒有考慮商品被購買的數量,而量化關聯規則也沒有考慮到商品本身的利潤,因此如何同時考慮商品本身的利潤與其被購買的數量,成為本研究的議題。本論文主要應用分割演算法(Partition algorithm)將其資料量化,之後建立成P-tree的結構,再加上ABC理論及多支持度的概念,提出了一個新PMSFP-tree(Profit and Multiple minimum Supports Frequent Patterns tree)結構與PMSQFP-growth(Profit and Multiple minimum Supports QFP-growth)演算法。 Association rules takes an important role in Data Mining. By applying this technique, the relations between the data in a transaction database can be found, and then managers utilize the explored information to make decisions.The traditional association rules technique mostly focuses on the amount of trades, so that the goods with high profits and low sales volume will be neglected. This paper proposes a method using the concept of P-tree(Patterns tree), CFP-growth and QFP-growth. Subsequently, the common stock-checking method, ABC, is utilized to classify the goods so as to those goods with high profits and high support will be remained. Finally, the explored information will be much expected to conform to managers.By combining the concepts as mentioned above, a novel technique, PMSFP-tree (Profit and Multiple minimum Supports Frequent Patterns tree) and PMSQFP-growth (Profit and Multiple minimum Supports QFP-growth) is proposed in this paper. Experimental results demonstrate that our method can improve the drawbacks of CFP-growth. Besides, by taking account of trade profits, the mined results will be much respond to its actual facts.
510
1
$a
Mining Quantitative Association Rules with Multiple Minimum Supports Based Mainly on Profits
610
0
$a
ABC理論
$a
FP-tree
$a
QFP-growth
$a
量化關聯規則
610
1
$a
ACB approach
$a
FP-tree
$a
QFP-growth
$a
Quantitative
681
$a
008.161M
$b
8773
700
$a
鄭
$b
印良
$3
523841
702
$a
楊
$b
達立
$3
490206
712
$a
國立虎尾科技大學
$b
工業工程與管理究所
$3
523742
770
$a
Yin-Liang Cheng
$3
586705
772
$a
Dar-Li Yang
$3
538335
801
0
$a
cw
$b
虎尾科技大學
$c
20071207
$g
CCR
801
2
$a
cw
$b
虎尾科技大學
$c
20090420
$g
CCR
856
7
$2
http
$u
http://140.130.12.251/ETD-db/ETD-search-c/view_etd?URN=etd-0703107-213708
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T000770
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.161M 8773 96
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login