語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lab-on-a-chip : = techniques, circui...
~
Ghallab, Yehya H.
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Lab-on-a-chip :/ Yehya H. Ghallab, Wael Badawy.
其他題名:
techniques, circuits, and biomedical applications /
作者:
Ghallab, Yehya H.
其他作者:
Badawy, Wael.
出版者:
Boston ,Artech House, : c2010.:,
面頁冊數:
xv, 220 p. :ill. ; : 24 cm.;
標題:
Biomedical engineering. -
ISBN:
9781596934184 (cloth) :
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
Ghallab, Yehya H.
Lab-on-a-chip :
techniques, circuits, and biomedical applications /Yehya H. Ghallab, Wael Badawy. - Boston ,Artech House,c2010.: - xv, 220 p. :ill. ;24 cm. - Integrated microsystems series. - Artech House integrated microsystems series..
Includes bibliographic references and index.
1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip
ISBN: 9781596934184 (cloth) :NT3774
LCCN: 2010282726
Nat. Bib. No.: GBB0A6262bnbSubjects--Topical Terms:
588770
Biomedical engineering.
LC Class. No.: TK7875 / .G475 2010
Dewey Class. No.: 621.381
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
LDR
:05630cam a2200277 a 4500
001
672841
005
20110830114721.0
008
110908s2010 maua b 001 0 eng
010
$a
2010282726
$z
2011290108
$z
2011290133
015
$a
GBB0A6262
$2
bnb
020
$a
9781596934184 (cloth) :
$c
NT3774
020
$a
1596934182 (cloth)
035
$a
(OCoLC)ocn548660610
035
$a
2010282726
040
$a
NLM
$c
NLM
$d
BTCTA
$d
YDXCP
$d
CDX
$d
CIT
$d
MUU
$d
UKM
$d
UPM
$d
DLC
$d
NFU
041
0 #
$a
eng
042
$a
nlmcopyc
$a
lccopycat
050
0 0
$a
TK7875
$b
.G475 2010
082
0 4
$a
621.381
100
1
$a
Ghallab, Yehya H.
$3
775151
245
1 0
$a
Lab-on-a-chip :
$b
techniques, circuits, and biomedical applications /
$c
Yehya H. Ghallab, Wael Badawy.
260
#
$a
Boston ,
$c
c2010.:
$b
Artech House,
300
$a
xv, 220 p. :
$b
ill. ;
$c
24 cm.
490
1
$a
Integrated microsystems series
504
$a
Includes bibliographic references and index.
505
0 #
$a
1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip
505
0 #
$a
for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip
505
0 #
$a
Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References.
650
# 0
$a
Biomedical engineering.
$3
588770
650
# 0
$a
Chemical laboratories
$x
Electronic equipment.
$3
775154
650
# 0
$a
Microelectromechanical systems.
$3
559134
700
1 #
$a
Badawy, Wael.
$3
775152
830
0
$a
Artech House integrated microsystems series.
$3
775153
筆 0 讀者評論
全部
圖書館3F 書庫
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
E034941
圖書館3F 書庫
一般圖書(BOOK)
一般圖書
621.381 G411 2010
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入