Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Lab-on-a-chip : = techniques, circui...
~
Ghallab, Yehya H.
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Lab-on-a-chip :/ Yehya H. Ghallab, Wael Badawy.
Reminder of title:
techniques, circuits, and biomedical applications /
Author:
Ghallab, Yehya H.
other author:
Badawy, Wael.
Published:
Boston ,Artech House, : c2010.:,
Description:
xv, 220 p. :ill. ; : 24 cm.;
Subject:
Biomedical engineering. -
ISBN:
9781596934184 (cloth) :
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
Ghallab, Yehya H.
Lab-on-a-chip :
techniques, circuits, and biomedical applications /Yehya H. Ghallab, Wael Badawy. - Boston ,Artech House,c2010.: - xv, 220 p. :ill. ;24 cm. - Integrated microsystems series. - Artech House integrated microsystems series..
Includes bibliographic references and index.
1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip
ISBN: 9781596934184 (cloth) :NT3774
LCCN: 2010282726
Nat. Bib. No.: GBB0A6262bnbSubjects--Topical Terms:
588770
Biomedical engineering.
LC Class. No.: TK7875 / .G475 2010
Dewey Class. No.: 621.381
Lab-on-a-chip : = techniques, circuits, and biomedical applications /
LDR
:05630cam a2200277 a 4500
001
672841
005
20110830114721.0
008
110908s2010 maua b 001 0 eng
010
$a
2010282726
$z
2011290108
$z
2011290133
015
$a
GBB0A6262
$2
bnb
020
$a
9781596934184 (cloth) :
$c
NT3774
020
$a
1596934182 (cloth)
035
$a
(OCoLC)ocn548660610
035
$a
2010282726
040
$a
NLM
$c
NLM
$d
BTCTA
$d
YDXCP
$d
CDX
$d
CIT
$d
MUU
$d
UKM
$d
UPM
$d
DLC
$d
NFU
041
0 #
$a
eng
042
$a
nlmcopyc
$a
lccopycat
050
0 0
$a
TK7875
$b
.G475 2010
082
0 4
$a
621.381
100
1
$a
Ghallab, Yehya H.
$3
775151
245
1 0
$a
Lab-on-a-chip :
$b
techniques, circuits, and biomedical applications /
$c
Yehya H. Ghallab, Wael Badawy.
260
#
$a
Boston ,
$c
c2010.:
$b
Artech House,
300
$a
xv, 220 p. :
$b
ill. ;
$c
24 cm.
490
1
$a
Integrated microsystems series
504
$a
Includes bibliographic references and index.
505
0 #
$a
1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip
505
0 #
$a
for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip
505
0 #
$a
Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References.
650
# 0
$a
Biomedical engineering.
$3
588770
650
# 0
$a
Chemical laboratories
$x
Electronic equipment.
$3
775154
650
# 0
$a
Microelectromechanical systems.
$3
559134
700
1 #
$a
Badawy, Wael.
$3
775152
830
0
$a
Artech House integrated microsystems series.
$3
775153
based on 0 review(s)
ALL
圖書館3F 書庫
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
E034941
圖書館3F 書庫
一般圖書(BOOK)
一般圖書
621.381 G411 2010
一般使用(Normal)
On shelf
0
Reserve
1 records • Pages 1 •
1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login