語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Low Cost Solution-Based Solar Cells.
~
Lee, Dongho.
Low Cost Solution-Based Solar Cells.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Low Cost Solution-Based Solar Cells./
作者:
Lee, Dongho.
面頁冊數:
195 p.
附註:
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: 0399.
Contained By:
Dissertation Abstracts International73-01B.
標題:
Alternative Energy. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3475339
ISBN:
9781124935003
Low Cost Solution-Based Solar Cells.
Lee, Dongho.
Low Cost Solution-Based Solar Cells.
- 195 p.
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: 0399.
Thesis (Ph.D.)--State University of New York at Buffalo, 2011.
There has been extensive research on reducing the cost of fabricating solar cells. Recently, due to the high fabrication cost of Silicon (Si) based solar cells, solution-based solar cells are receiving significant attention for low cost and mass production fabrication, and various materials have been investigated to obtain high quality film and high performance solar cells.
ISBN: 9781124935003Subjects--Topical Terms:
845381
Alternative Energy.
Low Cost Solution-Based Solar Cells.
LDR
:05065nam 2200361 4500
001
712951
005
20121003100313.5
008
121101s2011 ||||||||||||||||| ||eng d
020
$a
9781124935003
035
$a
(UMI)AAI3475339
035
$a
AAI3475339
040
$a
UMI
$c
UMI
100
1
$a
Lee, Dongho.
$3
845469
245
1 0
$a
Low Cost Solution-Based Solar Cells.
300
$a
195 p.
500
$a
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: 0399.
500
$a
Adviser: Alexander N. Cartwright.
502
$a
Thesis (Ph.D.)--State University of New York at Buffalo, 2011.
520
$a
There has been extensive research on reducing the cost of fabricating solar cells. Recently, due to the high fabrication cost of Silicon (Si) based solar cells, solution-based solar cells are receiving significant attention for low cost and mass production fabrication, and various materials have been investigated to obtain high quality film and high performance solar cells.
520
$a
This dissertation deals with two solution-based solar cell fabrication methods; the successive ionic layer adsorption and reaction (SILAR) process and a spray-based deposition method. In the first case, quantum dots, made from cadmium sulfide (CdS) and cadmium selenide (CdSe) with high absorption coefficients, were created on a Titanium dioxide (TiO2) surface by the SILAR process. Those QDs were then used for absorbing light by using a single layer of CdS and also a cascaded double layer (CdS/CdSe) structure. The second approach to reduce the cost is to deposit the earth abundant materials using a spray-based method. Compounds containing Copper (Cu), Zinc (An), Tin (Sn) and Sulfur (S) were used as absorber layer materials, and a spray-based method was employed to deposit these absorber precursors on a heated substrate.
520
$a
The first solar cell structure investigated in this thesis is a quantum dot sensitized solar cell. CdS and CdS/CdSe quantum dot sensitized solar cells (QDSSC) fabricated using the SILAR process were investigated and a rate-equation model of trap induced power conversion efficiency (PCE) limits was developed and used to explain the experimental results. The highest power conversion efficiency (PCE) in the cascade structure was obtained with a CdS:CdSe 7:7 cycle ratio. This cycle ratio resulted in 2.55% PCE, 0.55V open circuit voltage (Voc) and a short circuit current density (Jsc) of 10.5 mA/cm2 with 44.1% fill factor (FF) under AM1.5G 1-sun illumination. However, excess cycles of CdSe beyond 7:7 decreases the device performance. The current loss when exceeding the optimum condition (7/7) is attributed to a trap induced space charge field which impedes the carrier extraction from the absorber layer to the TiO2. Increases in recombination due to dislocation generation when the critical thickness of the deposited layer exceeds the length for pseudomorphic growth. The simulation results (based on a phenomenological mode) are consistent with an increase of dislocations and corresponding increases in recombination rate. Taken together these effects impede the charge transfer at the interface between TiO2 and the QDs.
520
$a
The second investigation in this thesis focuses on the development of solar cells using earth abundant materials deposited with a spraying technique. All layers are sprayed on a fluorine doped tin oxide (FTO) substrate at different temperatures. The solar cell structure that we used in this thesis is FTO/d-TiO 2/In2S3/C2ZTS4/Au. A d-TiO 2 is a compactly deposited TiO2 layer about 40nm of thickness by spray method. The spraying temperature for the In2S3 buffer layer and the C2ZTS4 absorber layer were systematically investigated. Devices fabricated under different spraying temperatures were investigated and characterized. The optimum temperature for the In2S 3 buffer layer and the C2ZTS4 absorber layer were 360°C and 380°C, respectively. The C2ZTS4 layer sprayed at low temperature (340°C) results in low quality crystallinity with secondary phases (ZnS and CuxS) and poor adhesion. The absorber layer sprayed at high temperature showed higher crystalline quality but the entire device performance was degraded due to poor fill factor (<25%). Moreover, the sheet resistance of the C2ZTS4 layer was drastically increased at high temperature spraying. The best cell showed a PCE of 4.4%, VOC of 410mV, JSC of 30.4mA/cm2 and FF of 35.3% under simulated AM 1.5G illumination condition.
520
$a
The future direction of this work is discussed within the context of the significant research underway globally to develop cost-effective photovoltaics.
590
$a
School code: 0656.
650
4
$a
Alternative Energy.
$3
845381
650
4
$a
Economics, General.
$3
845471
650
4
$a
Engineering, Materials Science.
$3
845422
690
$a
0363
690
$a
0501
690
$a
0794
710
2
$a
State University of New York at Buffalo.
$b
Electrical Engineering.
$3
845470
773
0
$t
Dissertation Abstracts International
$g
73-01B.
790
1 0
$a
Cartwright, Alexander N.,
$e
advisor
790
1 0
$a
Anderson, Wayne
$e
committee member
790
1 0
$a
Prasad, Paras N.
$e
committee member
790
$a
0656
791
$a
Ph.D.
792
$a
2011
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3475339
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入