語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sensor and data fusion = a tool for ...
~
Klein, Lawrence A.
Sensor and data fusion = a tool for information assessment and decision making /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Sensor and data fusion/ Lawrence A. Klein.
其他題名:
a tool for information assessment and decision making /
作者:
Klein, Lawrence A.
出版者:
Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) :SPIE, : c2004.,
面頁冊數:
1 online resource (xxii, 317 p. : ill.) :digital file. :
附註:
"SPIE digital library."
標題:
Signal processing - Digital techniques. -
電子資源:
http://dx.doi.org/10.1117/3.563340
ISBN:
9780819481115 (electronic)
Sensor and data fusion = a tool for information assessment and decision making /
Klein, Lawrence A.
Sensor and data fusion
a tool for information assessment and decision making /[electronic resource] :Lawrence A. Klein. - Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) :SPIE,c2004. - 1 online resource (xxii, 317 p. : ill.) :digital file. - SPIE Press monograph ;PM138. - SPIE Press monograph ;PM103..
"SPIE digital library."
Includes bibliographical references and index.
Chapter 1. Introduction -- Chapter 2. Multiple sensor system applications, benefits, and design considerations -- 2.1. Data fusion applications to multiple sensor systems -- 2.2. Selection of sensors -- 2.3. Benefits of multiple sensor systems -- 2.4. Influence of wavelength on atmospheric attenuation -- 2.5. Fog characterization -- 2.6. Effects of operating frequency on MMW sensor performance -- 2.7. Absorption of MMW energy in rain and fog -- 2.8. Backscatter of MMW energy from rain -- 2.9. Effects of operating wavelength on IR sensor performance -- 2.10. Visibility metrics -- 2.10.1. Visibility -- 2.10.2. Meteorological range -- 2.11. Attenuation of IR energy by rain -- 2.12. Extinction coefficient values (typical) -- 2.13. Summary of attributes of electromagnetic sensors -- 2.14. Atmospheric and sensor system computer simulation models -- 2.14.1. LOWTRAN attenuation model -- 2.14.2. FASCODE and MODTRAN attenuation models -- 2.14.3. EOSAEL sensor performance model -- 2.15. Summary -- References --
Restricted to subscribers or individual electronic text purchasers.
This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.
Mode of access: World Wide Web.
ISBN: 9780819481115 (electronic)
Standard No.: 10.1117/3.563340doiSubjects--Topical Terms:
556357
Signal processing
--Digital techniques.
LC Class. No.: TK5102.9 / .K53 2004
Dewey Class. No.: 681/.2
Sensor and data fusion = a tool for information assessment and decision making /
LDR
:07112nam 2200481 a 4500
001
731070
003
SPIE
005
20100320142341.0
006
m e d
007
cr bn |||m|||a
008
130501s2004 waua ob 001 0 eng d
010
$z
2004003963
020
$a
9780819481115 (electronic)
020
$z
0819454354 (print)
020
$z
9780819454355 (print)
024
7
$a
10.1117/3.563340
$2
doi
035
$a
(OCoLC)606697056
035
$a
(CaBNVSL)gtp00538552
035
$a
9780819481115
040
$a
CaBNVSL
$c
CaBNVSL
$d
CaBNVSL
050
4
$a
TK5102.9
$b
.K53 2004
082
0 4
$a
681/.2
$2
22
100
1
$a
Klein, Lawrence A.
$3
877345
245
1 0
$a
Sensor and data fusion
$h
[electronic resource] :
$b
a tool for information assessment and decision making /
$c
Lawrence A. Klein.
260
$a
Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) :
$b
SPIE,
$c
c2004.
300
$a
1 online resource (xxii, 317 p. : ill.) :
$b
digital file.
490
1
$a
SPIE Press monograph ;
$v
PM138
500
$a
"SPIE digital library."
504
$a
Includes bibliographical references and index.
505
0
$a
Chapter 1. Introduction -- Chapter 2. Multiple sensor system applications, benefits, and design considerations -- 2.1. Data fusion applications to multiple sensor systems -- 2.2. Selection of sensors -- 2.3. Benefits of multiple sensor systems -- 2.4. Influence of wavelength on atmospheric attenuation -- 2.5. Fog characterization -- 2.6. Effects of operating frequency on MMW sensor performance -- 2.7. Absorption of MMW energy in rain and fog -- 2.8. Backscatter of MMW energy from rain -- 2.9. Effects of operating wavelength on IR sensor performance -- 2.10. Visibility metrics -- 2.10.1. Visibility -- 2.10.2. Meteorological range -- 2.11. Attenuation of IR energy by rain -- 2.12. Extinction coefficient values (typical) -- 2.13. Summary of attributes of electromagnetic sensors -- 2.14. Atmospheric and sensor system computer simulation models -- 2.14.1. LOWTRAN attenuation model -- 2.14.2. FASCODE and MODTRAN attenuation models -- 2.14.3. EOSAEL sensor performance model -- 2.15. Summary -- References --
505
0
$a
Chapter 3. Data fusion algorithms and architectures -- 3.1. Definition of data fusion -- 3.2. Level 1 processing -- 3.3. Level 2, 3, and 4 processing -- 3.4. Data fusion processor functions -- 3.5. Definition of an architecture -- 3.6. Data fusion architectures -- 3.7. Sensor footprint registration and size considerations -- 3.8. Summary -- References --
505
0
$a
Chapter 4. Classical inference -- 4.1. Estimating the statistics of a population -- 4.2. Interpreting the confidence interval -- 4.3. Confidence interval for a population mean -- 4.4. Significance tests for hypotheses -- 4.5. The z-test for the population mean -- 4.6. Tests with fixed significance level -- 4.7. The t-test for a population mean -- 4.8. Caution in use of significance tests -- 4.9. Inference as a decision -- 4.10. Summary -- References --
505
0
$a
Chapter 5. Bayesian inference -- 5.1. Bayes' rule -- 5.2. Bayes' rule in terms of odds probability and likelihood ratio -- 5.3. Direct application of Bayes' rule to cancer screening test example -- 5.4. Comparison of Bayesian inference with classical inference -- 5.5. Application of Bayesian inference to fusing information from multiple sources -- 5.6. Combining multiple sensor information using the odds probability form of Bayes' rule -- 5.7. Recursive Bayesian updating -- 5.8. Posterior calculation using multivalued hypotheses and recursive updating -- 5.9. Enhancing underground mine detection with data from two noncommensurate sensors -- 5.10. Summary -- References --
505
0
$a
Chapter 6. Dempster-Shafer evidential theory -- 6.1. Overview of the process -- 6.2. Implementation of the method -- 6.3. Support, plausibility, and uncertainty interval -- 6.4. Dempster's rule for combination of multiple sensor data -- 6.5. Comparison of Dempster-Shafer with Bayesian decision theory -- 6.6 Probabilistic models for transformation of Dempster-Shafer belief functions for decision making -- 6.7. Summary -- References --
505
0
$a
Chapter 7. Artificial neural networks -- 7.1. Applications of artificial neural networks -- 7.2. Adaptive linear combiner -- 7.3. Linear classifiers -- 7.4. Capacity of linear classifiers -- 7.5. Nonlinear classifiers -- 7.6. Capacity of nonlinear classifiers -- 7.7. Supervised and unsupervised learning -- 7.8. Supervised learning rules -- 7.9. Generalization -- 7.10. Other artificial neural networks and processing techniques -- 7.11. Summary -- References --
505
0
$a
Chapter 8. Voting logic fusion -- 8.1. Sensor target reports -- 8.2. Sensor detection space -- 8.3. System detection probability -- 8.4. Application example without singleton sensor detection modes -- 8.5. Hardware implementation of voting logic sensor fusion -- 8.6. Application example with singleton sensor detection modes -- 8.7. Comparison of voting logic fusion with Dempster-Shafer evidential theory -- 8.8. Summary -- References --
505
0
$a
Chapter 9. Fuzzy logic and fuzzy neural networks -- 9.1. Conditions under which fuzzy logic provides an appropriate solution -- 9.2. Illustration of fuzzy logic in an automobile antilock system -- 9.3. Basic elements of a fuzzy system -- 9.4. Fuzzy logic processing -- 9.5. Fuzzy centroid calculation -- 9.6. Balancing an inverted pendulum with fuzzy logic control -- 9.7. Fuzzy logic applied to multitarget tracking -- 9.8. Fuzzy neural networks -- 9.9. Fusion of fuzzy-valued information from multiple -- sources -- 9.10. Summary -- References --
505
0
$a
Chapter 10. Passive data association techniques for unambiguous location of targets -- 10.1. Data fusion options -- 10.2. Received-signal fusion -- 10.3. Angle data fusion -- 10.4. Decentralized fusion architecture -- 10.5. Passive computation of range using tracks from a single sensor site -- 10.6. Summary -- References --
505
0
$a
Chapter 11. Retrospective comments -- Appendix A. Planck radiation law and radiative transfer -- A.1. Planck radiation law -- A.2. Radiative transfer theory -- References -- Appendix B. Voting fusion with nested confidence levels -- Index.
506
$a
Restricted to subscribers or individual electronic text purchasers.
520
$a
This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.
530
$a
Also available in print version.
538
$a
Mode of access: World Wide Web.
538
$a
System requirements: Adobe Acrobat Reader.
650
0
$a
Signal processing
$x
Digital techniques.
$3
556357
650
0
$a
Multisensor data fusion.
$3
558700
710
2
$a
Society of Photo-optical Instrumentation Engineers.
$3
700253
830
0
$a
SPIE Press monograph ;
$v
PM103.
$3
877204
856
4 0
$u
http://dx.doi.org/10.1117/3.563340
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入