語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Uncertainty and information = founda...
~
Klir, George J., (1932-)
Uncertainty and information = foundations of generalized information theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Uncertainty and information/ George J. Klir.
其他題名:
foundations of generalized information theory /
作者:
Klir, George J.,
出版者:
Hoboken, N.J. :Wiley-Interscience, : c2006.,
面頁冊數:
xvii, 499 p. :ill. ; : 25 cm.;
標題:
Uncertainty (Information theory) -
電子資源:
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237750
ISBN:
0471755575
Uncertainty and information = foundations of generalized information theory /
Klir, George J.,1932-
Uncertainty and information
foundations of generalized information theory /[electronic resource] :George J. Klir. - Hoboken, N.J. :Wiley-Interscience,c2006. - xvii, 499 p. :ill. ;25 cm.
Includes bibliographical references (p. 458-486) and indexes.
Cover Table of Contents Preface Acknowledgments 1 Introduction 1.1. Uncertainty and Its Significance 1.2. Uncertainty-Based Information 1.3. Generalized Information Theory 1.4. Relevant Terminology and Notation 1.5. An Outline of the Book Notes Exercises 2 Classical Possibility-Based Uncertainty Theory 2.1. Possibility and Necessity Functions 2.2. Hartley Measure of Uncertainty for Finite Sets 2.2.1. Simple Derivation of the Hartley Measure 2.2.2. Uniqueness of the Hartley Measure 2.2.3. Basic Properties of the Hartley Measure 2.2.4. Examples 2.3. Hartley-Like Measure of Uncertainty for Infinite Sets 2.3.1. Definition 2.3.2. Required Properties 2.3.3. Examples Notes Exercises 3 Classical Probability-Based Uncertainty Theory 3.1. Probability Functions 3.1.1. Functions on Finite Sets 3.1.2. Functions on Infinite Sets 3.1.3. Bayes p( s Theorem 3.2. Shannon Measure of Uncertainty for Finite Sets 3.2.1. Simple Derivation of the Shannon Entropy 3.2.2. Uniqueness of the Shannon Entropy 3.2.3. Basic Properties of the Shannon Entropy 3.2.4. Examples 3.3. Shannon-Like Measure of Uncertainty for Infinite Sets Notes Exercises 4 Generalized Measures and Imprecise Probabilities 4.1. Monotone Measures 4.2. Choquet Capacities 4.2.1. Ms Representation 4.3. Imprecise Probabilities: General Principles 4.3.1. Lower and Upper Probabilities 4.3.2. Alternating Choquet Capacities 4.3.3. Interaction Representation 4.3.4. Ms Representation 4.3.5. Joint and Marginal Imprecise Probabilities 4.3.6. Conditional Imprecise Probabilities 4.3.7. Noninteraction of Imprecise Probabilities 4.4. Arguments for Imprecise Probabilities 4.5. Choquet Integral 4.6. Unifying Features of Imprecise Probabilities Notes Exercises 5 Special Theories of Imprecise Probabilities 5.1. An Overview 5.2. Graded Possibilities 5.2.1. Ms Representation 5.2.2. Ordering of Possibility Profiles 5.2.3. Joint and Marginal Possibilities 5.2.4. Conditional Possibilities 5.2.5. Possibilities on Infinite Sets 5.2.6. Some Interpretations of Graded Possibilities 5.3. Sugeno l-Measures 5.3.1. Ms Representation 5.4. Belief and Plausibility Measures 5.4.1. Joint and Marginal Bodies of Evidence 5.4.2. Rules of Combination 5.4.3. Special Classes of Bodies of Evidence 5.5. Reachable Interval-Valued Probability Distributions 5.5.1. Joint and Marginal Interval-Valued Probability Distributions 5.6. Other Types of Monotone Measures Notes Exercises 6 Measures of Uncertainty and Information 6.1. General Discussion 6.2. Generalized Hartley Measure for Graded Possibilities 6.2.1. Joint and Marginal U-Uncertainties 6.2.2. Conditional U-Uncertainty 6.2.3. Axiomatic Requirements for the U-Uncertainty 6.2.4. U-Uncertainty for Infinite Sets 6.3. Generalized Hartley Measure in Dempster�Shafer Theory 6.3.1. Joint and Marginal Generalized Hartley Measures 6.3.2. Monotonicity of the Generalized Hartley Measure 6.3.3. Conditional Generalized Hartley Measures 6.4. Generalized Hartley Measure for Convex Sets of Probability Distributions 6.5. Generalized Shannon Measure in Dempster-Shafer Theory 6.6. Aggregate Uncertainty in Dempster�Shafer Theory 6.6.1. General Algorithm for Computing the Aggregate Uncertainty 6.6.2. Computing the Aggregated Uncertainty in Possibility Theory 6.7. Aggregate Uncertainty for Convex Sets of Probability Distributions 6.8. Disaggregated Total Uncertainty 6.9. Generalized Shannon Entropy 6.10. Alternative View of Disaggregated Total Uncertainty 6.11. Unifying Features of Uncertainty Measures Notes Exercises 7 Fuzzy Set Theory 7.1. An Overview 7.2. Basic Concepts of Standard Fuzzy Sets 7.3. Operations on Standard Fuzzy Sets 7.3.1. Complementation Operations 7.3.2. Intersection and Union Operations 7.3.3. Combinations of Basic Operations 7.3.4. Other Operations 7.4. Fuzzy Numbers and Intervals 7.4.1. Standard Fuzzy Arithmetic 7.4.2. Constrain.
ISBN: 0471755575
Standard No.: 10.1002/0471755575doi
Source: 110479200Wiley InterSciencehttp://www3.interscience.wiley.comSubjects--Topical Terms:
644010
Uncertainty (Information theory)
Index Terms--Genre/Form:
554714
Electronic books.
LC Class. No.: Q375 / .K55 2005
Dewey Class. No.: 003/.54
Uncertainty and information = foundations of generalized information theory /
LDR
:05320cam 2200409Ia 4500
001
735024
003
OCoLC
005
20121225141807.0
006
m o d
007
cr cn|
008
130624s2006 njua ob 001 0 eng d
019
$a
441751992
$a
647776912
020
$a
0471755575
020
$a
9780471755579
020
$a
0471755567 (electronic bk.)
020
$a
9780471755562 (electronic bk.)
020
$z
0471748676 (Cloth)
020
$z
9780471748670
024
7
$a
10.1002/0471755575
$2
doi
029
1
$a
DG1
$b
jws01939379
029
1
$a
AU@
$b
000042867412
035
$a
(OCoLC)85785189
$z
(OCoLC)441751992
$z
(OCoLC)647776912
035
$a
ocm85785189
037
$a
110479200
$b
Wiley InterScience
$n
http://www3.interscience.wiley.com
040
$a
DG1
$b
eng
$c
DG1
$d
DG1
$d
IEEEE
$d
OCLCQ
$d
DG1
$d
MERUC
$d
E7B
$d
IDEBK
$d
OCLCQ
049
$a
HISA
050
1 4
$a
Q375
$b
.K55 2005
082
0 4
$a
003/.54
$2
22
100
1
$a
Klir, George J.,
$d
1932-
$3
562758
245
1 0
$a
Uncertainty and information
$h
[electronic resource] :
$b
foundations of generalized information theory /
$c
George J. Klir.
260
$a
Hoboken, N.J. :
$b
Wiley-Interscience,
$c
c2006.
300
$a
xvii, 499 p. :
$b
ill. ;
$c
25 cm.
504
$a
Includes bibliographical references (p. 458-486) and indexes.
505
0
$a
Cover Table of Contents Preface Acknowledgments 1 Introduction 1.1. Uncertainty and Its Significance 1.2. Uncertainty-Based Information 1.3. Generalized Information Theory 1.4. Relevant Terminology and Notation 1.5. An Outline of the Book Notes Exercises 2 Classical Possibility-Based Uncertainty Theory 2.1. Possibility and Necessity Functions 2.2. Hartley Measure of Uncertainty for Finite Sets 2.2.1. Simple Derivation of the Hartley Measure 2.2.2. Uniqueness of the Hartley Measure 2.2.3. Basic Properties of the Hartley Measure 2.2.4. Examples 2.3. Hartley-Like Measure of Uncertainty for Infinite Sets 2.3.1. Definition 2.3.2. Required Properties 2.3.3. Examples Notes Exercises 3 Classical Probability-Based Uncertainty Theory 3.1. Probability Functions 3.1.1. Functions on Finite Sets 3.1.2. Functions on Infinite Sets 3.1.3. Bayes p( s Theorem 3.2. Shannon Measure of Uncertainty for Finite Sets 3.2.1. Simple Derivation of the Shannon Entropy 3.2.2. Uniqueness of the Shannon Entropy 3.2.3. Basic Properties of the Shannon Entropy 3.2.4. Examples 3.3. Shannon-Like Measure of Uncertainty for Infinite Sets Notes Exercises 4 Generalized Measures and Imprecise Probabilities 4.1. Monotone Measures 4.2. Choquet Capacities 4.2.1. Ms Representation 4.3. Imprecise Probabilities: General Principles 4.3.1. Lower and Upper Probabilities 4.3.2. Alternating Choquet Capacities 4.3.3. Interaction Representation 4.3.4. Ms Representation 4.3.5. Joint and Marginal Imprecise Probabilities 4.3.6. Conditional Imprecise Probabilities 4.3.7. Noninteraction of Imprecise Probabilities 4.4. Arguments for Imprecise Probabilities 4.5. Choquet Integral 4.6. Unifying Features of Imprecise Probabilities Notes Exercises 5 Special Theories of Imprecise Probabilities 5.1. An Overview 5.2. Graded Possibilities 5.2.1. Ms Representation 5.2.2. Ordering of Possibility Profiles 5.2.3. Joint and Marginal Possibilities 5.2.4. Conditional Possibilities 5.2.5. Possibilities on Infinite Sets 5.2.6. Some Interpretations of Graded Possibilities 5.3. Sugeno l-Measures 5.3.1. Ms Representation 5.4. Belief and Plausibility Measures 5.4.1. Joint and Marginal Bodies of Evidence 5.4.2. Rules of Combination 5.4.3. Special Classes of Bodies of Evidence 5.5. Reachable Interval-Valued Probability Distributions 5.5.1. Joint and Marginal Interval-Valued Probability Distributions 5.6. Other Types of Monotone Measures Notes Exercises 6 Measures of Uncertainty and Information 6.1. General Discussion 6.2. Generalized Hartley Measure for Graded Possibilities 6.2.1. Joint and Marginal U-Uncertainties 6.2.2. Conditional U-Uncertainty 6.2.3. Axiomatic Requirements for the U-Uncertainty 6.2.4. U-Uncertainty for Infinite Sets 6.3. Generalized Hartley Measure in Dempster�Shafer Theory 6.3.1. Joint and Marginal Generalized Hartley Measures 6.3.2. Monotonicity of the Generalized Hartley Measure 6.3.3. Conditional Generalized Hartley Measures 6.4. Generalized Hartley Measure for Convex Sets of Probability Distributions 6.5. Generalized Shannon Measure in Dempster-Shafer Theory 6.6. Aggregate Uncertainty in Dempster�Shafer Theory 6.6.1. General Algorithm for Computing the Aggregate Uncertainty 6.6.2. Computing the Aggregated Uncertainty in Possibility Theory 6.7. Aggregate Uncertainty for Convex Sets of Probability Distributions 6.8. Disaggregated Total Uncertainty 6.9. Generalized Shannon Entropy 6.10. Alternative View of Disaggregated Total Uncertainty 6.11. Unifying Features of Uncertainty Measures Notes Exercises 7 Fuzzy Set Theory 7.1. An Overview 7.2. Basic Concepts of Standard Fuzzy Sets 7.3. Operations on Standard Fuzzy Sets 7.3.1. Complementation Operations 7.3.2. Intersection and Union Operations 7.3.3. Combinations of Basic Operations 7.3.4. Other Operations 7.4. Fuzzy Numbers and Intervals 7.4.1. Standard Fuzzy Arithmetic 7.4.2. Constrain.
650
0
$a
Uncertainty (Information theory)
$3
644010
650
0
$a
Fuzzy systems.
$3
528426
650
6
$a
Incertitude (Th�eorie de l'information)
$3
771662
650
6
$a
Syst�emes flous.
$3
771663
655
4
$a
Electronic books.
$2
local
$3
554714
856
4 0
$3
IEEE Xplore
$u
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237750
938
$a
Wiley Subscription Services
$b
WILY
$n
jws01939379
938
$a
ebrary
$b
EBRY
$n
ebr10299988
938
$a
Ingram Digital eBook Collection
$b
IDEB
$n
24298
994
$a
92
$b
TWHIS
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入