語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Adaptive filters
~
Sayed, Ali H.
Adaptive filters
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Adaptive filters/ Ali H. Sayed.
作者:
Sayed, Ali H.
出版者:
Hoboken, N.J. :Wiley-Interscience : : c2008.,
面頁冊數:
1 online resource (xxx, 786 p.) :ill. :
標題:
Adaptive filters. -
電子資源:
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237520
ISBN:
9780470374122
Adaptive filters
Sayed, Ali H.
Adaptive filters
[electronic resource] /Ali H. Sayed. - Hoboken, N.J. :Wiley-Interscience :c2008. - 1 online resource (xxx, 786 p.) :ill.
Includes bibliographical references (p. 758-774) and indexes.
Cover13; -- Title13; -- Copyright13; -- Dedication13; -- Contents13; -- Preface -- Notation -- Acknowledgments -- Background Material 13; -- A Random Variables -- A.1 Variance of a Random Variable -- A.2 Dependent Random Variables -- A.3 Complex-Valued Random Variables -- A.4 Vector-Valued Random Variables -- A.5 Gaussian Random Vectors -- B Linear Algebra -- B.1 Hermitian and Positive-Definite Matrices -- B.2 Range Spaces and Nullspaces of Matrices -- B.3 Schur Complements -- B.4 Cholesky Factorization -- B.5 QR Decomposition -- B.6 Singular Value Decomposition -- B.7 Kronecker Products -- C Complex Gradients -- C.1 Cauchy-Riemann Conditions -- C.2 Scalar Arguments -- C.3 Vector Arguments -- Part I: Optimal Estimation13; -- 113;Scalar-Valued Data -- 1.1 Estimation Without Observations -- 1.2 Estimation Given Dependent Observations -- 1.3 Orthogonality Principle -- 1.4 Gaussian Random Variables -- 213;Vector-Valued Data -- 2.1 Optimal Estimator in the Vector Case -- 2.2 Spherically Invariant Gaussian Variables -- 2.3 Equivalent Optimization Criterion -- Summary and Notes -- Problems and Computer Projects -- Part II: Linear Estimation13; -- 3 Normal Equations13; -- 3.1 Mean-Square Error Criterion -- 3.2 Minimization by Differentiation -- 3.3 Minimization by Completion-of-Squares -- 3.4 Minimization of the Error Covariance Matrix -- 3.5 Optimal Linear Estimator -- 4 Orthogonality Principle13; -- 4.1 Design Examples -- 4.2 Orthogonality Condition -- 4.3 Existence of Solutions -- 4.4 Nonzero-Mean Variables -- 5 Linear Models13; -- 5.1 Estimation using Linear Relations -- 5.2 Application: Channel Estimation -- 5.3 Application: Block Data Estimation -- 5.4 Application: Linear Channel Equalization -- 5.5 Application: Multiple-Antenna Receivers -- 6 Constrained Estimation13; -- 6.1 Minimum-Variance Unbiased Estimation -- 6.2 Example: Mean Estimation -- 6.3 Application: Channel and Noise Estimation -- 6.4 Application: Decision Feedback Equalization -- 6.5 Application: Antenna Beamforming -- 7 Kalman Filter13; -- 7.1 Innovations Process -- 7.2 State-Space Model -- 7.3 Recursion for the State Estimator -- 7.4 Computing the Gain Matrix -- 7.5 Riccati Recursion -- 7.6 Covariance Form -- 7.7 Measurement and Time-Update Form -- Summary and Notes -- Problems and Computer Projects -- Part III: Stochastic Gradient Algorithms13; -- 8 Steepest8211;Descent Technique13; -- 8.1 Linear Estimation Problem -- 8.2 Steepest-Descent Method -- 8.3 More General Cost Functions -- 9 Transient Behavior13; -- 9.1 Modes of Convergence -- 9.2 Optimal Step-Size -- 9.3 Weight-Error Vector Convergence -- 9.4 Time Constants -- 9.5 Learning Curve -- 9.6 Contour Curves of the Error Surface -- 9.7 Iteration-Dependent Step-Sizes -- 9.8 Newton8217;s Method -- 10 LMS Algorithm13; -- 10.1 Motivation -- 10.2 Instantaneous Approximation -- 10.3 Computational Cost -- 10.4 Least-Perturbation Property -- 10.5 Application: Adaptive Channel Estimation -- 10.6 Application: Adaptive Channel Equalization -- 10.7 Application: Decision-Feedback Equalization -- 10.8 Ensemble-Average Learning Curves -- 11 Normalized LMS Algorithm13; -- T$137.
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. Now, preserving the style and main features of the earlier award-winning publication, "Fundamentals of Adaptive Filtering" (2005 Terman Award), the author offers readers and instructors a concentrated, systematic, and up-to-date treatment of the subject in this valuable new book. "Adaptive Filters" allows readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. This book consists of eleven parts - each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB[registered] solutions available to all readers. Additional features include: numerous tables, figures, and projects; special focus on geometric constructions, physical intuition, linear-algebraic concepts, and vector notation; background material on random variables, linear algebra, and complex gradients collected in three introductory chapters; and, complete solutions manual available for instructors MATLAB[registered] solutions available for all computer projects. "Adaptive Filters" offers a fresh, focused look at the subject in a manner that will entice students, challenge experts, and appeal to practitioners and instructors.
ISBN: 9780470374122
Standard No.: 10.1002/9780470374122doi
Source: 10.1002/9780470374122Wiley InterSciencehttp://www3.interscience.wiley.comSubjects--Topical Terms:
557949
Adaptive filters.
Index Terms--Genre/Form:
554714
Electronic books.
LC Class. No.: TK7872.F5 / S285 2008
Dewey Class. No.: 621.3815/324
Adaptive filters
LDR
:06335cam 2200481Ia 4500
001
735062
003
OCoLC
005
20121225141845.0
006
m o d
007
cr cn|
008
130624s2008 njua ob 001 0 eng d
019
$a
241309532
$a
319620841
$a
646752087
$a
746573787
020
$a
9780470374122
020
$a
0470374128
020
$a
9780470374115 (electronic bk.)
020
$a
047037411X (electronic bk.)
020
$a
9780470253885 (cloth)
020
$a
0470253886 (cloth)
024
7
$a
10.1002/9780470374122
$2
doi
029
1
$a
AU@
$b
000045457457
029
1
$a
NZ1
$b
13445169
035
$a
(OCoLC)352835054
$z
(OCoLC)241309532
$z
(OCoLC)319620841
$z
(OCoLC)646752087
$z
(OCoLC)746573787
035
$a
ocn352835054
037
$a
10.1002/9780470374122
$b
Wiley InterScience
$n
http://www3.interscience.wiley.com
040
$a
DG1
$b
eng
$c
DG1
$d
IEEEE
$d
DG1
$d
OCLCQ
$d
COO
$d
YDXCP
$d
N$T
$d
CUS
$d
IDEBK
$d
BUF
$d
E7B
$d
EBLCP
$d
OCLCQ
049
$a
HISA
050
4
$a
TK7872.F5
$b
S285 2008
072
7
$a
TEC
$x
008020
$2
bisacsh
072
7
$a
TEC
$x
008010
$2
bisacsh
072
7
$a
TJFC
$2
bicssc
082
0 4
$a
621.3815/324
$2
22
100
1
$a
Sayed, Ali H.
$3
528225
245
1 0
$a
Adaptive filters
$h
[electronic resource] /
$c
Ali H. Sayed.
260
$a
Hoboken, N.J. :
$b
Wiley-Interscience :
$b
IEEE Press,
$c
c2008.
300
$a
1 online resource (xxx, 786 p.) :
$b
ill.
504
$a
Includes bibliographical references (p. 758-774) and indexes.
505
0
$a
Cover13; -- Title13; -- Copyright13; -- Dedication13; -- Contents13; -- Preface -- Notation -- Acknowledgments -- Background Material 13; -- A Random Variables -- A.1 Variance of a Random Variable -- A.2 Dependent Random Variables -- A.3 Complex-Valued Random Variables -- A.4 Vector-Valued Random Variables -- A.5 Gaussian Random Vectors -- B Linear Algebra -- B.1 Hermitian and Positive-Definite Matrices -- B.2 Range Spaces and Nullspaces of Matrices -- B.3 Schur Complements -- B.4 Cholesky Factorization -- B.5 QR Decomposition -- B.6 Singular Value Decomposition -- B.7 Kronecker Products -- C Complex Gradients -- C.1 Cauchy-Riemann Conditions -- C.2 Scalar Arguments -- C.3 Vector Arguments -- Part I: Optimal Estimation13; -- 113;Scalar-Valued Data -- 1.1 Estimation Without Observations -- 1.2 Estimation Given Dependent Observations -- 1.3 Orthogonality Principle -- 1.4 Gaussian Random Variables -- 213;Vector-Valued Data -- 2.1 Optimal Estimator in the Vector Case -- 2.2 Spherically Invariant Gaussian Variables -- 2.3 Equivalent Optimization Criterion -- Summary and Notes -- Problems and Computer Projects -- Part II: Linear Estimation13; -- 3 Normal Equations13; -- 3.1 Mean-Square Error Criterion -- 3.2 Minimization by Differentiation -- 3.3 Minimization by Completion-of-Squares -- 3.4 Minimization of the Error Covariance Matrix -- 3.5 Optimal Linear Estimator -- 4 Orthogonality Principle13; -- 4.1 Design Examples -- 4.2 Orthogonality Condition -- 4.3 Existence of Solutions -- 4.4 Nonzero-Mean Variables -- 5 Linear Models13; -- 5.1 Estimation using Linear Relations -- 5.2 Application: Channel Estimation -- 5.3 Application: Block Data Estimation -- 5.4 Application: Linear Channel Equalization -- 5.5 Application: Multiple-Antenna Receivers -- 6 Constrained Estimation13; -- 6.1 Minimum-Variance Unbiased Estimation -- 6.2 Example: Mean Estimation -- 6.3 Application: Channel and Noise Estimation -- 6.4 Application: Decision Feedback Equalization -- 6.5 Application: Antenna Beamforming -- 7 Kalman Filter13; -- 7.1 Innovations Process -- 7.2 State-Space Model -- 7.3 Recursion for the State Estimator -- 7.4 Computing the Gain Matrix -- 7.5 Riccati Recursion -- 7.6 Covariance Form -- 7.7 Measurement and Time-Update Form -- Summary and Notes -- Problems and Computer Projects -- Part III: Stochastic Gradient Algorithms13; -- 8 Steepest8211;Descent Technique13; -- 8.1 Linear Estimation Problem -- 8.2 Steepest-Descent Method -- 8.3 More General Cost Functions -- 9 Transient Behavior13; -- 9.1 Modes of Convergence -- 9.2 Optimal Step-Size -- 9.3 Weight-Error Vector Convergence -- 9.4 Time Constants -- 9.5 Learning Curve -- 9.6 Contour Curves of the Error Surface -- 9.7 Iteration-Dependent Step-Sizes -- 9.8 Newton8217;s Method -- 10 LMS Algorithm13; -- 10.1 Motivation -- 10.2 Instantaneous Approximation -- 10.3 Computational Cost -- 10.4 Least-Perturbation Property -- 10.5 Application: Adaptive Channel Estimation -- 10.6 Application: Adaptive Channel Equalization -- 10.7 Application: Decision-Feedback Equalization -- 10.8 Ensemble-Average Learning Curves -- 11 Normalized LMS Algorithm13; -- T$137.
520
$a
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. Now, preserving the style and main features of the earlier award-winning publication, "Fundamentals of Adaptive Filtering" (2005 Terman Award), the author offers readers and instructors a concentrated, systematic, and up-to-date treatment of the subject in this valuable new book. "Adaptive Filters" allows readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. This book consists of eleven parts - each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB[registered] solutions available to all readers. Additional features include: numerous tables, figures, and projects; special focus on geometric constructions, physical intuition, linear-algebraic concepts, and vector notation; background material on random variables, linear algebra, and complex gradients collected in three introductory chapters; and, complete solutions manual available for instructors MATLAB[registered] solutions available for all computer projects. "Adaptive Filters" offers a fresh, focused look at the subject in a manner that will entice students, challenge experts, and appeal to practitioners and instructors.
650
0
$a
Adaptive filters.
$3
557949
650
7
$a
TECHNOLOGY & ENGINEERING
$x
Electronics
$x
Circuits
$x
Integrated.
$2
bisacsh
$3
771780
650
7
$a
TECHNOLOGY & ENGINEERING
$x
Electronics
$x
Circuits
$x
General.
$2
bisacsh
$3
771781
655
4
$a
Electronic books.
$2
local
$3
554714
856
4 0
$3
IEEE Xplore
$u
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237520
938
$a
YBP Library Services
$b
YANK
$n
2979138
938
$a
ebrary
$b
EBRY
$n
ebr10233093
938
$a
EBL - Ebook Library
$b
EBLB
$n
EBL343693
938
$a
EBSCOhost
$b
EBSC
$n
233087
938
$a
Ingram Digital eBook Collection
$b
IDEB
$n
137431
994
$a
92
$b
TWHIS
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入