語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Matrix methods in data mining and pa...
~
Elden, Lars, (1944-)
Matrix methods in data mining and pattern recognition /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Matrix methods in data mining and pattern recognition // Lars Elden.
作者:
Elden, Lars,
出版者:
Philadelphia, PA :Society for Industrial and Applied Mathematics, : c2007.,
面頁冊數:
x, 224 p. :ill. ; : 26 cm.;
標題:
Data mining. -
ISBN:
9780898716269 (pbk.) :
Matrix methods in data mining and pattern recognition /
Elden, Lars,1944-
Matrix methods in data mining and pattern recognition /
Lars Elden. - Philadelphia, PA :Society for Industrial and Applied Mathematics,c2007. - x, 224 p. :ill. ;26 cm. - Fundamentals of algorithms. - Fundamentals of algorithms..
Includes bibliographical references (p. 209-216) and index.
I: Linear algebra concepts and matrix decompositions -- 1: Vectors and matrices in data mining and pattern recognition -- 2: Vectors and matrices -- 3: Linear systems and least squares -- 4: Orthogonality -- 5: QR decomposition -- 6: Singular value decomposition -- 7: Reduced-rank least squares models -- 8: Tensor decomposition -- II: Data mining applications -- 10: Classification of handwritten digits -- 11: Text mining -- 12: Page ranking for a Web search engine -- 13: Automatic key word and key sentence extraction -- 14: Face recognition using tensor SVD -- III: Computing the matrix decompositions -- 15: Computing eigenvalues and singular values.
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.
ISBN: 9780898716269 (pbk.) :NT2599
LCCN: 2006041348Subjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343 / E52 2007
Dewey Class. No.: 005.74
Matrix methods in data mining and pattern recognition /
LDR
:02084cam a2200217 a 4500
001
825297
005
20151104151349.0
008
151120s2007 paua b 001 0 eng
010
$a
2006041348
020
$a
9780898716269 (pbk.) :
$c
NT2599
020
$a
0898716268 (pbk.)
040
$a
DLC
$b
eng
$c
DLC
$d
BTCTA
$d
BAKER
$d
C#P
$d
YDXCP
$d
MUQ
$d
OCLCG
$d
I8H
$d
ZWZ
$d
OCLCQ
$d
DEBSZ
$d
OCLCF
$d
OCLCO
$d
OCLCQ
$d
NFU
041
0 #
$a
eng
050
0 0
$a
QA76.9.D343
$b
E52 2007
082
0 0
$a
005.74
$2
22
100
1
$a
Elden, Lars,
$d
1944-
$3
873427
245
1 0
$a
Matrix methods in data mining and pattern recognition /
$c
Lars Elden.
260
#
$a
Philadelphia, PA :
$b
Society for Industrial and Applied Mathematics,
$c
c2007.
300
$a
x, 224 p. :
$b
ill. ;
$c
26 cm.
490
1
$a
Fundamentals of algorithms
504
$a
Includes bibliographical references (p. 209-216) and index.
505
0 #
$a
I: Linear algebra concepts and matrix decompositions -- 1: Vectors and matrices in data mining and pattern recognition -- 2: Vectors and matrices -- 3: Linear systems and least squares -- 4: Orthogonality -- 5: QR decomposition -- 6: Singular value decomposition -- 7: Reduced-rank least squares models -- 8: Tensor decomposition -- II: Data mining applications -- 10: Classification of handwritten digits -- 11: Text mining -- 12: Page ranking for a Web search engine -- 13: Automatic key word and key sentence extraction -- 14: Face recognition using tensor SVD -- III: Computing the matrix decompositions -- 15: Computing eigenvalues and singular values.
520
#
$a
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.
650
# 0
$a
Data mining.
$3
528622
650
# 0
$a
Pattern recognition systems
$x
Mathematical models.
$3
744224
650
# 0
$a
Algebras, Linear.
$3
528115
830
0
$a
Fundamentals of algorithms.
$3
744223
筆 0 讀者評論
全部
圖書館3F 書庫
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
E041742
圖書館3F 書庫
一般圖書(BOOK)
一般圖書
005.74 E37 2007
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入