語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Molecular imaging in nano MRI
~
Ting, Michael ((Software engineer))
Molecular imaging in nano MRI
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Molecular imaging in nano MRI/ Michael Ting.
作者:
Ting, Michael
出版者:
Hoboken :Wiley, : 2014.,
面頁冊數:
1 online resource (89 p.)
標題:
Magnetic resonance imaging - Computer programs. -
電子資源:
http://onlinelibrary.wiley.com/book/10.1002/9781118760949
ISBN:
9781118760932 (electronic bk.)
Molecular imaging in nano MRI
Ting, Michael(Software engineer)
Molecular imaging in nano MRI
[electronic resource] /Michael Ting. - Hoboken :Wiley,2014. - 1 online resource (89 p.) - FOCUS Series. - Colección "FOCUS.".
Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B.
ISBN: 9781118760932 (electronic bk.)Subjects--Topical Terms:
1059528
Magnetic resonance imaging
--Computer programs.
LC Class. No.: T174.7
Dewey Class. No.: 620.5
Molecular imaging in nano MRI
LDR
:03267cam a2200337Ia 4500
001
831501
003
OCoLC
006
m o d
007
cr |||||||||||
008
160215s2014 nju o 000 0 eng d
020
$a
9781118760932 (electronic bk.)
020
$a
111876093X (electronic bk.)
020
$a
9781118760895 (electronic bk.)
020
$a
1118760891 (electronic bk.)
020
$a
9781118760949 (electronic bk.)
020
$a
1118760948 (electronic bk.)
020
$z
9781848214743
035
$a
(OCoLC)871224295
035
$a
ocn871224295
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
OCLCQ
$d
IDEBK
$d
N
$d
DG1
050
4
$a
T174.7
082
0 4
$a
620.5
$2
22
100
1
$a
Ting, Michael
$c
(Software engineer)
$3
1059526
245
1 0
$a
Molecular imaging in nano MRI
$h
[electronic resource] /
$c
Michael Ting.
260
$a
Hoboken :
$b
Wiley,
$c
2014.
300
$a
1 online resource (89 p.)
490
1
$a
FOCUS Series
505
0
$a
Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
505
8
$a
3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example.
505
8
$a
Chapter 5. Monte Carlo Approach: Gibbs Sampling5.1. Introduction; 5.2. Casting the sparse image reconstruction problem in the Bayesian framework; 5.3. MAP estimate using the Gibbs sampler; 5.3.1. Conditional density of w; 5.3.2. Conditional density of a; 5.3.3. Conditional density of x; 5.3.4. Conditional density of σ2; 5.4. Uncertainty in the blur point spread function; 5.5. Simulation example; Chapter 6. Simulation Study; 6.1. Introduction; 6.2. Reconstruction simulation study; 6.2.1. Binary-valued x; 6.2.2. {0, ±1}-valued x; 6.3. Discussion; Bibliography; Index.
520
$a
The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B.
588
$a
Description based on print version record.
650
0
$a
Magnetic resonance imaging
$x
Computer programs.
$3
1059528
650
0
$a
Nanoscience.
$3
632473
650
0
$a
Nuclear magnetic resonance
$x
Computer programs.
$3
1059529
830
0
$a
Colección "FOCUS."
$3
1059527
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781118760949
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入