語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Clifford algebras = geometric modell...
~
SpringerLink (Online service)
Clifford algebras = geometric modelling and chain geometries with application in kinematics /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Clifford algebras/ by Daniel Klawitter.
其他題名:
geometric modelling and chain geometries with application in kinematics /
作者:
Klawitter, Daniel.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2015.,
面頁冊數:
xviii, 216 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Clifford algebras. -
電子資源:
http://dx.doi.org/10.1007/978-3-658-07618-4
ISBN:
9783658076184 (electronic bk.)
Clifford algebras = geometric modelling and chain geometries with application in kinematics /
Klawitter, Daniel.
Clifford algebras
geometric modelling and chain geometries with application in kinematics /[electronic resource] :by Daniel Klawitter. - Wiesbaden :Springer Fachmedien Wiesbaden :2015. - xviii, 216 p. :ill. (some col.), digital ;24 cm.
Models and representations of classical groups -- Clifford algebras, chain geometries over Clifford algebras -- Kinematic mappings for Pin and Spin groups -- Cayley-Klein geometries.
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About the Author Daniel Klawitter is a scientific assistant at the Institute of Geometry at the Technical University of Dresden, Germany.
ISBN: 9783658076184 (electronic bk.)
Standard No.: 10.1007/978-3-658-07618-4doiSubjects--Topical Terms:
678814
Clifford algebras.
LC Class. No.: QA199
Dewey Class. No.: 512.57
Clifford algebras = geometric modelling and chain geometries with application in kinematics /
LDR
:02323nam a2200313 a 4500
001
834755
003
DE-He213
005
20150618162200.0
006
m d
007
cr nn 008maaau
008
160421s2015 gw s 0 eng d
020
$a
9783658076184 (electronic bk.)
020
$a
9783658076177 (paper)
024
7
$a
10.1007/978-3-658-07618-4
$2
doi
035
$a
978-3-658-07618-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA199
072
7
$a
PBM
$2
bicssc
072
7
$a
MAT012000
$2
bisacsh
082
0 4
$a
512.57
$2
23
090
$a
QA199
$b
.K63 2015
100
1
$a
Klawitter, Daniel.
$3
1063500
245
1 0
$a
Clifford algebras
$h
[electronic resource] :
$b
geometric modelling and chain geometries with application in kinematics /
$c
by Daniel Klawitter.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2015.
300
$a
xviii, 216 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Models and representations of classical groups -- Clifford algebras, chain geometries over Clifford algebras -- Kinematic mappings for Pin and Spin groups -- Cayley-Klein geometries.
520
$a
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About the Author Daniel Klawitter is a scientific assistant at the Institute of Geometry at the Technical University of Dresden, Germany.
650
0
$a
Clifford algebras.
$3
678814
650
0
$a
Kinematics.
$3
792042
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Geometry.
$3
579899
650
2 4
$a
Algebraic Geometry.
$3
670184
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-07618-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入