Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Bifurcation without parameters
~
SpringerLink (Online service)
Bifurcation without parameters
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Bifurcation without parameters/ by Stefan Liebscher.
Author:
Liebscher, Stefan.
Published:
Cham :Springer International Publishing : : 2015.,
Description:
xii, 142 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Bifurcation theory. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-10777-6
ISBN:
9783319107776 (electronic bk.)
Bifurcation without parameters
Liebscher, Stefan.
Bifurcation without parameters
[electronic resource] /by Stefan Liebscher. - Cham :Springer International Publishing :2015. - xii, 142 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,21170075-8434 ;. - Lecture notes in mathematics ;1943..
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar'e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
ISBN: 9783319107776 (electronic bk.)
Standard No.: 10.1007/978-3-319-10777-6doiSubjects--Topical Terms:
527837
Bifurcation theory.
LC Class. No.: QA380
Dewey Class. No.: 515.392
Bifurcation without parameters
LDR
:02221nam a2200325 a 4500
001
835302
003
DE-He213
005
20150709150727.0
006
m d
007
cr nn 008maaau
008
160421s2015 gw s 0 eng d
020
$a
9783319107776 (electronic bk.)
020
$a
9783319107769 (paper)
024
7
$a
10.1007/978-3-319-10777-6
$2
doi
035
$a
978-3-319-10777-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA380
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.392
$2
23
090
$a
QA380
$b
.L717 2015
100
1
$a
Liebscher, Stefan.
$3
1064458
245
1 0
$a
Bifurcation without parameters
$h
[electronic resource] /
$c
by Stefan Liebscher.
260
$a
Cham :
$c
2015.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xii, 142 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2117
505
0
$a
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar'e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
520
$a
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
650
0
$a
Bifurcation theory.
$3
527837
650
0
$a
Manifolds (Mathematics)
$3
672402
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
1943.
$3
882220
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-10777-6
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login