語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical methods for nonlinear part...
~
SpringerLink (Online service)
Numerical methods for nonlinear partial differential equations
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Numerical methods for nonlinear partial differential equations/ by Soren Bartels.
作者:
Bartels, Soren.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
x, 393 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Differential equations, Partial - Numerical solutions. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-13797-1
ISBN:
9783319137971 (electronic bk.)
Numerical methods for nonlinear partial differential equations
Bartels, Soren.
Numerical methods for nonlinear partial differential equations
[electronic resource] /by Soren Bartels. - Cham :Springer International Publishing :2015. - x, 393 p. :ill., digital ;24 cm. - Springer series in computational mathematics,v.470179-3632 ;. - Springer series in computational mathematics ;42..
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
ISBN: 9783319137971 (electronic bk.)
Standard No.: 10.1007/978-3-319-13797-1doiSubjects--Topical Terms:
527938
Differential equations, Partial
--Numerical solutions.
LC Class. No.: QA377
Dewey Class. No.: 515.353
Numerical methods for nonlinear partial differential equations
LDR
:02414nam a2200337 a 4500
001
836143
003
DE-He213
005
20150903133057.0
006
m d
007
cr nn 008maaau
008
160421s2015 gw s 0 eng d
020
$a
9783319137971 (electronic bk.)
020
$a
9783319137964 (paper)
024
7
$a
10.1007/978-3-319-13797-1
$2
doi
035
$a
978-3-319-13797-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.B283 2015
100
1
$a
Bartels, Soren.
$3
1065993
245
1 0
$a
Numerical methods for nonlinear partial differential equations
$h
[electronic resource] /
$c
by Soren Bartels.
260
$a
Cham :
$c
2015.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
x, 393 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in computational mathematics,
$x
0179-3632 ;
$v
v.47
505
0
$a
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
520
$a
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
650
0
$a
Differential equations, Partial
$x
Numerical solutions.
$3
527938
650
0
$a
Differential equations, Nonlinear.
$3
528440
650
0
$a
Numerical analysis.
$3
527939
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Algorithms.
$3
527865
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
593942
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer series in computational mathematics ;
$v
42.
$3
890855
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-13797-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入