語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sublinear algorithms for big data ap...
~
Wang, Dan.
Sublinear algorithms for big data applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Sublinear algorithms for big data applications/ by Dan Wang, Zhu Han.
作者:
Wang, Dan.
其他作者:
Han, Zhu.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xi, 85 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Computer algorithms. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-20448-2
ISBN:
9783319204482 (electronic bk.)
Sublinear algorithms for big data applications
Wang, Dan.
Sublinear algorithms for big data applications
[electronic resource] /by Dan Wang, Zhu Han. - Cham :Springer International Publishing :2015. - xi, 85 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Basics for Sublinear Algorithms -- Applications for Wireless Sensor Networks -- Applications for Big Data Processing -- Applications for a Smart Grid -- Concluding Remarks.
The brief focuses on applying sublinear algorithms to manage critical big data challenges. The text offers an essential introduction to sublinear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bridging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.
ISBN: 9783319204482 (electronic bk.)
Standard No.: 10.1007/978-3-319-20448-2doiSubjects--Topical Terms:
528448
Computer algorithms.
LC Class. No.: QA76.9.A43
Dewey Class. No.: 005.1
Sublinear algorithms for big data applications
LDR
:01915nam a2200337 a 4500
001
836690
003
DE-He213
005
20160223093648.0
006
m d
007
cr nn 008maaau
008
160421s2015 gw s 0 eng d
020
$a
9783319204482 (electronic bk.)
020
$a
9783319204475 (paper)
024
7
$a
10.1007/978-3-319-20448-2
$2
doi
035
$a
978-3-319-20448-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.A43
072
7
$a
UN
$2
bicssc
072
7
$a
UMT
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
082
0 4
$a
005.1
$2
23
090
$a
QA76.9.A43
$b
W246 2015
100
1
$a
Wang, Dan.
$3
1067020
245
1 0
$a
Sublinear algorithms for big data applications
$h
[electronic resource] /
$c
by Dan Wang, Zhu Han.
260
$a
Cham :
$c
2015.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xi, 85 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Basics for Sublinear Algorithms -- Applications for Wireless Sensor Networks -- Applications for Big Data Processing -- Applications for a Smart Grid -- Concluding Remarks.
520
$a
The brief focuses on applying sublinear algorithms to manage critical big data challenges. The text offers an essential introduction to sublinear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bridging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.
650
0
$a
Computer algorithms.
$3
528448
650
0
$a
Big data.
$3
981821
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Database Management.
$3
669820
650
2 4
$a
Computer Communication Networks.
$3
669310
650
2 4
$a
Communications Engineering, Networks.
$3
669809
700
1
$a
Han, Zhu.
$3
1019368
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
883114
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20448-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入