語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pole solutions for flame front propa...
~
Kupervasser, Oleg.
Pole solutions for flame front propagation
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Pole solutions for flame front propagation/ by Oleg Kupervasser.
作者:
Kupervasser, Oleg.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
x, 118 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Nonlinear integral equations. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-18845-4
ISBN:
9783319188454 (electronic bk.)
Pole solutions for flame front propagation
Kupervasser, Oleg.
Pole solutions for flame front propagation
[electronic resource] /by Oleg Kupervasser. - Cham :Springer International Publishing :2015. - x, 118 p. :ill. (some col.), digital ;24 cm. - Mathematical and analytical techniques with applications to engineering,1559-7458. - Mathematical and analytical techniques with applications to engineering..
Introduction -- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry -- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane -- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries -- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution -- Summary.
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
ISBN: 9783319188454 (electronic bk.)
Standard No.: 10.1007/978-3-319-18845-4doiSubjects--Topical Terms:
1067182
Nonlinear integral equations.
LC Class. No.: QA431
Dewey Class. No.: 515.355
Pole solutions for flame front propagation
LDR
:02146nam a2200325 a 4500
001
836816
003
DE-He213
005
20160225145024.0
006
m d
007
cr nn 008maaau
008
160421s2015 gw s 0 eng d
020
$a
9783319188454 (electronic bk.)
020
$a
9783319188447 (paper)
024
7
$a
10.1007/978-3-319-18845-4
$2
doi
035
$a
978-3-319-18845-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA431
072
7
$a
TBJ
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
515.355
$2
23
090
$a
QA431
$b
.K96 2015
100
1
$a
Kupervasser, Oleg.
$3
1067180
245
1 0
$a
Pole solutions for flame front propagation
$h
[electronic resource] /
$c
by Oleg Kupervasser.
260
$a
Cham :
$c
2015.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
x, 118 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Mathematical and analytical techniques with applications to engineering,
$x
1559-7458
505
0
$a
Introduction -- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry -- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane -- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries -- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution -- Summary.
520
$a
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
650
0
$a
Nonlinear integral equations.
$3
1067182
650
0
$a
Differential equations, Nonlinear.
$3
528440
650
0
$a
Combustion
$x
Mathematical models.
$3
783788
650
1 4
$a
Engineering.
$3
561152
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
669335
650
2 4
$a
Plasma Physics.
$3
768744
650
2 4
$a
Engineering Fluid Dynamics.
$3
670525
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Mathematical and analytical techniques with applications to engineering.
$3
1067181
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-18845-4
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入