語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Virtual turning points
~
Kawai, Takahiro.
Virtual turning points
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Virtual turning points/ by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei.
作者:
Honda, Naofumi.
其他作者:
Kawai, Takahiro.
出版者:
Tokyo :Springer Japan : : 2015.,
面頁冊數:
xii, 126 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Stokes equations. -
電子資源:
http://dx.doi.org/10.1007/978-4-431-55702-9
ISBN:
9784431557029 (electronic bk.)
Virtual turning points
Honda, Naofumi.
Virtual turning points
[electronic resource] /by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei. - Tokyo :Springer Japan :2015. - xii, 126 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in mathematical physics,v.42197-1757 ;. - SpringerBriefs in mathematical physics ;v.2..
1. Definition and basic properties of virtual turning Points -- 2. Application to the Noumi-Yamada system with a large Parameter -- 3. Exact WKB analysis of non-adiabatic transition problems for 3-levels -- A. Integral representation of solutions and the Borel resummed WKBsolutions.
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painleve equations of the Noumi-Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
ISBN: 9784431557029 (electronic bk.)
Standard No.: 10.1007/978-4-431-55702-9doiSubjects--Topical Terms:
1067412
Stokes equations.
LC Class. No.: QA927
Dewey Class. No.: 518.64
Virtual turning points
LDR
:02105nam a2200325 a 4500
001
836941
003
DE-He213
005
20160223152725.0
006
m d
007
cr nn 008maaau
008
160421s2015 ja s 0 eng d
020
$a
9784431557029 (electronic bk.)
020
$a
9784431557012 (paper)
024
7
$a
10.1007/978-4-431-55702-9
$2
doi
035
$a
978-4-431-55702-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA927
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
518.64
$2
23
090
$a
QA927
$b
.H771 2015
100
1
$a
Honda, Naofumi.
$3
1067410
245
1 0
$a
Virtual turning points
$h
[electronic resource] /
$c
by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei.
260
$a
Tokyo :
$c
2015.
$b
Springer Japan :
$b
Imprint: Springer,
300
$a
xii, 126 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.4
505
0
$a
1. Definition and basic properties of virtual turning Points -- 2. Application to the Noumi-Yamada system with a large Parameter -- 3. Exact WKB analysis of non-adiabatic transition problems for 3-levels -- A. Integral representation of solutions and the Borel resummed WKBsolutions.
520
$a
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painleve equations of the Noumi-Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
650
0
$a
Stokes equations.
$3
1067412
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Quantum Physics.
$3
671960
700
1
$a
Kawai, Takahiro.
$3
898748
700
1
$a
Takei, Yoshitsugu.
$3
1067411
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.2.
$3
1062983
856
4 0
$u
http://dx.doi.org/10.1007/978-4-431-55702-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入