語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature selection for high-dimension...
~
Alonso-Betanzos, Amparo.
Feature selection for high-dimensional data
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Feature selection for high-dimensional data/ by Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos.
作者:
Bolon-Canedo, Veronica.
其他作者:
Alonso-Betanzos, Amparo.
出版者:
Cham :Imprint: Springer, : 2015.,
面頁冊數:
xv, 147 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Data Structures. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-21858-8
ISBN:
9783319218588
Feature selection for high-dimensional data
Bolon-Canedo, Veronica.
Feature selection for high-dimensional data
[electronic resource] /by Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos. - Cham :Imprint: Springer,2015. - xv, 147 p. :ill., digital ;24 cm. - Artificial intelligence: foundations, theory, and algorithms,2365-3051. - Artificial intelligence: foundations, theory, and algorithms..
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
ISBN: 9783319218588
Standard No.: 10.1007/978-3-319-21858-8doiSubjects--Topical Terms:
669824
Data Structures.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Feature selection for high-dimensional data
LDR
:02435nam a2200337 a 4500
001
838165
003
DE-He213
005
20160422160819.0
006
m d
007
cr nn 008maaau
008
160616s2015 gw s 0 eng d
020
$a
9783319218588
$q
(electronic bk.)
020
$a
9783319218571
$q
(paper)
024
7
$a
10.1007/978-3-319-21858-8
$2
doi
035
$a
978-3-319-21858-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
B693 2015
100
1
$a
Bolon-Canedo, Veronica.
$3
1069162
245
1 0
$a
Feature selection for high-dimensional data
$h
[electronic resource] /
$c
by Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos.
260
$a
Cham :
$c
2015.
$b
Imprint: Springer,
$b
Springer International Publishing :
300
$a
xv, 147 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Artificial intelligence: foundations, theory, and algorithms,
$x
2365-3051
505
0
$a
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
520
$a
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
650
2 4
$a
Data Structures.
$3
669824
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
650
1 4
$a
Computer Science.
$3
593922
650
0
$a
Database management.
$3
557799
650
0
$a
Data mining.
$3
528622
700
1
$a
Alonso-Betanzos, Amparo.
$3
1069164
700
1
$a
Sanchez-Marono, Noelia.
$3
1069163
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Artificial intelligence: foundations, theory, and algorithms.
$3
1067745
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-21858-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入