語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Movie analytics = a Hollywood introd...
~
SpringerLink (Online service)
Movie analytics = a Hollywood introduction to big data /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Movie analytics/ by Dominique Haughton ... [et al.].
其他題名:
a Hollywood introduction to big data /
其他作者:
Haughton, Dominique.
出版者:
Cham :Imprint: Springer, : 2015.,
面頁冊數:
viii, 64 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Computer Graphics. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-09426-7
ISBN:
9783319094267
Movie analytics = a Hollywood introduction to big data /
Movie analytics
a Hollywood introduction to big data /[electronic resource] :by Dominique Haughton ... [et al.]. - Cham :Imprint: Springer,2015. - viii, 64 p. :ill., digital ;24 cm. - SpringerBriefs in statistics,2191-544X. - SpringerBriefs in statistics..
What do we know about analyzing movie data: section on past literature -- What does "Big Data" mean; the data scientist point of view -- Visualization of very large networks: the co-starring social network -- Movie attendance and trends -- Oscar prediction and prediction markets -- Can we predict Oscars from Twitter and movie review data.
Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.
ISBN: 9783319094267
Standard No.: 10.1007/978-3-319-09426-7doiSubjects--Topical Terms:
669895
Computer Graphics.
LC Class. No.: PN1995
Dewey Class. No.: 791.43015
Movie analytics = a Hollywood introduction to big data /
LDR
:02335nam a2200325 a 4500
001
838574
003
DE-He213
005
20160412140517.0
006
m d
007
cr nn 008maaau
008
160616s2015 gw s 0 eng d
020
$a
9783319094267
$q
(electronic bk.)
020
$a
9783319094250
$q
(paper)
024
7
$a
10.1007/978-3-319-09426-7
$2
doi
035
$a
978-3-319-09426-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
PN1995
072
7
$a
JHBC
$2
bicssc
072
7
$a
SOC027000
$2
bisacsh
082
0 4
$a
791.43015
$2
23
090
$a
PN1995
$b
.M935 2015
245
0 0
$a
Movie analytics
$h
[electronic resource] :
$b
a Hollywood introduction to big data /
$c
by Dominique Haughton ... [et al.].
260
$a
Cham :
$c
2015.
$b
Imprint: Springer,
$b
Springer International Publishing :
300
$a
viii, 64 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in statistics,
$x
2191-544X
505
0
$a
What do we know about analyzing movie data: section on past literature -- What does "Big Data" mean; the data scientist point of view -- Visualization of very large networks: the co-starring social network -- Movie attendance and trends -- Oscar prediction and prediction markets -- Can we predict Oscars from Twitter and movie review data.
520
$a
Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.
650
2 4
$a
Computer Graphics.
$3
669895
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law.
$3
670129
650
1 4
$a
Statistics.
$3
556824
650
0
$a
Visual analytics.
$3
681559
650
0
$a
Motion pictures
$x
Philosophy.
$3
556100
700
1
$a
Haughton, Dominique.
$3
816075
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in statistics.
$3
884250
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-09426-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入