語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fractional order Darwinian particle ...
~
Couceiro, Micael.
Fractional order Darwinian particle swarm optimization = applications and evaluation of an evolutionary algorithm /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Fractional order Darwinian particle swarm optimization/ by Micael Couceiro, Pedram Ghamisi.
其他題名:
applications and evaluation of an evolutionary algorithm /
作者:
Couceiro, Micael.
其他作者:
Ghamisi, Pedram.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
x, 75 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Swarm intelligence. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-19635-0
ISBN:
9783319196350
Fractional order Darwinian particle swarm optimization = applications and evaluation of an evolutionary algorithm /
Couceiro, Micael.
Fractional order Darwinian particle swarm optimization
applications and evaluation of an evolutionary algorithm /[electronic resource] :by Micael Couceiro, Pedram Ghamisi. - Cham :Springer International Publishing :2016. - x, 75 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
ISBN: 9783319196350
Standard No.: 10.1007/978-3-319-19635-0doiSubjects--Topical Terms:
560714
Swarm intelligence.
LC Class. No.: Q337.3
Dewey Class. No.: 006.3824
Fractional order Darwinian particle swarm optimization = applications and evaluation of an evolutionary algorithm /
LDR
:02189nam a2200325 a 4500
001
860115
003
DE-He213
005
20160707152129.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319196350
$q
(electronic bk.)
020
$a
9783319196343
$q
(paper)
024
7
$a
10.1007/978-3-319-19635-0
$2
doi
035
$a
978-3-319-19635-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q337.3
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3824
$2
23
090
$a
Q337.3
$b
.C853 2016
100
1
$a
Couceiro, Micael.
$3
1101554
245
1 0
$a
Fractional order Darwinian particle swarm optimization
$h
[electronic resource] :
$b
applications and evaluation of an evolutionary algorithm /
$c
by Micael Couceiro, Pedram Ghamisi.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
x, 75 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
520
$a
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
650
0
$a
Swarm intelligence.
$3
560714
650
0
$a
Mathematical optimization.
$3
527675
650
0
$a
Evolution equations.
$3
679110
650
1 4
$a
Engineering.
$3
561152
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
650
2 4
$a
Systems Theory, Control.
$3
669337
700
1
$a
Ghamisi, Pedram.
$3
1101555
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
885514
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-19635-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入