Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Dense image correspondences for comp...
~
SpringerLink (Online service)
Dense image correspondences for computer vision
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Dense image correspondences for computer vision/ edited by Tal Hassner, Ce Liu.
other author:
Hassner, Tal.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xii, 295 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Electrical engineering. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-23048-1
ISBN:
9783319230481
Dense image correspondences for computer vision
Dense image correspondences for computer vision
[electronic resource] /edited by Tal Hassner, Ce Liu. - Cham :Springer International Publishing :2016. - xii, 295 p. :ill., digital ;24 cm.
Introduction to Dense Optical Flow -- SIFT Flow: Dense Correspondence across Scenes and its Applications -- Dense, Scale-Less Descriptors -- Scale-Space SIFT Flow -- Dense Segmentation-aware Descriptors -- SIFTpack: A Compact Representation for Efficient SIFT Matching -- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features -- From Images to Depths and Back -- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling -- Joint Inference in Image Datasets via Dense Correspondence -- Dense Correspondences and Ancient Texts.
ISBN: 9783319230481
Standard No.: 10.1007/978-3-319-23048-1doiSubjects--Topical Terms:
596380
Electrical engineering.
LC Class. No.: TK153
Dewey Class. No.: 621.3
Dense image correspondences for computer vision
LDR
:01528nam a2200325 a 4500
001
860795
003
DE-He213
005
20160721105627.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319230481
$q
(electronic bk.)
020
$a
9783319230474
$q
(paper)
024
7
$a
10.1007/978-3-319-23048-1
$2
doi
035
$a
978-3-319-23048-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK153
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
621.3
$2
23
090
$a
TK153
$b
.D413 2016
245
0 0
$a
Dense image correspondences for computer vision
$h
[electronic resource] /
$c
edited by Tal Hassner, Ce Liu.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xii, 295 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to Dense Optical Flow -- SIFT Flow: Dense Correspondence across Scenes and its Applications -- Dense, Scale-Less Descriptors -- Scale-Space SIFT Flow -- Dense Segmentation-aware Descriptors -- SIFTpack: A Compact Representation for Efficient SIFT Matching -- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features -- From Images to Depths and Back -- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling -- Joint Inference in Image Datasets via Dense Correspondence -- Dense Correspondences and Ancient Texts.
650
0
$a
Electrical engineering.
$3
596380
650
0
$a
Computer monitors
$x
Design and construction.
$3
1102717
650
0
$a
Image processing.
$3
557495
650
1 4
$a
Engineering.
$3
561152
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
650
2 4
$a
Communications Engineering, Networks.
$3
669809
700
1
$a
Hassner, Tal.
$3
1102715
700
1
$a
Liu, Ce.
$3
1102716
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23048-1
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login