Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
A study on catalytic conversion of n...
~
Yabushita, Mizuho.
A study on catalytic conversion of non-food biomass into chemicals = fusion of chemical sciences and engineering /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
A study on catalytic conversion of non-food biomass into chemicals/ by Mizuho Yabushita.
Reminder of title:
fusion of chemical sciences and engineering /
Author:
Yabushita, Mizuho.
Published:
Singapore :Springer Singapore : : 2016.,
Description:
xvii, 158 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Biomass conversion. -
Online resource:
http://dx.doi.org/10.1007/978-981-10-0332-5
ISBN:
9789811003325
A study on catalytic conversion of non-food biomass into chemicals = fusion of chemical sciences and engineering /
Yabushita, Mizuho.
A study on catalytic conversion of non-food biomass into chemicals
fusion of chemical sciences and engineering /[electronic resource] :by Mizuho Yabushita. - Singapore :Springer Singapore :2016. - xvii, 158 p. :ill. (some col.), digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
General Introduction -- Hydrolysis of Cellulose to Glucose Using Carbon Catalysts -- Mechanistic Study of Cellulose Hydrolysis by Carbon Catalysts -- Catalytic Depolymerization of Chitin to N-Acetylated Monomers -- Acid-Catalyzed Dehydration of Sorbitol to 1,4-Sorbitan -- General Conclusions -- Appendices.
The topic of this thesis is catalytic conversion of non-food, abundant, and renewable biomass such as cellulose and chitin to chemicals. In biorefinery, chemical transformation of polymers to valuable compounds has attracted worldwide interest for building sustainable societies. First, the current situation of this hot research area has been summarized well in the general introduction of the thesis, which helps readers to become familiar with this topic. Next, the author explains high-yielding production of glucose from cellulose by using an alkali-activated carbon as a catalyst, resulting in a yield of glucose as high as 88%, which is one of the highest yields ever reported. The characterization of carbon materials has indicated that weak acid sites on the catalyst promote the reaction, which is markedly different from reported catalytic systems that require strong acids. In addition, the first catalytic transformation of chitin with retention of N-acetyl groups has been developed. The combination of mechanocatalytic hydrolysis and thermal solvolysis enables the production of N-acetylated monomers in good yields of up to 70%. The catalytic systems demonstrated in this thesis are unique in the fields of both chemistry and chemical engineering, and their high efficiencies can contribute to green and sustainable chemistry in the future. Meanwhile, mechanistic studies based on characterization, thermodynamics, kinetics, and model reactions have also been performed to reveal the roles of catalysts during the reactions. The results will be helpful for readers to design and develop new catalysts and reaction systems.
ISBN: 9789811003325
Standard No.: 10.1007/978-981-10-0332-5doiSubjects--Topical Terms:
885329
Biomass conversion.
LC Class. No.: TP248.B55
Dewey Class. No.: 662.88
A study on catalytic conversion of non-food biomass into chemicals = fusion of chemical sciences and engineering /
LDR
:03011nam a2200325 a 4500
001
861908
003
DE-He213
005
20160817092126.0
006
m d
007
cr nn 008maaau
008
170720s2016 si s 0 eng d
020
$a
9789811003325
$q
(electronic bk.)
020
$a
9789811003318
$q
(paper)
024
7
$a
10.1007/978-981-10-0332-5
$2
doi
035
$a
978-981-10-0332-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TP248.B55
072
7
$a
PNRD
$2
bicssc
072
7
$a
SCI013060
$2
bisacsh
082
0 4
$a
662.88
$2
23
090
$a
TP248.B55
$b
Y11 2016
100
1
$a
Yabushita, Mizuho.
$3
1104647
245
1 2
$a
A study on catalytic conversion of non-food biomass into chemicals
$h
[electronic resource] :
$b
fusion of chemical sciences and engineering /
$c
by Mizuho Yabushita.
260
$a
Singapore :
$c
2016.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xvii, 158 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
General Introduction -- Hydrolysis of Cellulose to Glucose Using Carbon Catalysts -- Mechanistic Study of Cellulose Hydrolysis by Carbon Catalysts -- Catalytic Depolymerization of Chitin to N-Acetylated Monomers -- Acid-Catalyzed Dehydration of Sorbitol to 1,4-Sorbitan -- General Conclusions -- Appendices.
520
$a
The topic of this thesis is catalytic conversion of non-food, abundant, and renewable biomass such as cellulose and chitin to chemicals. In biorefinery, chemical transformation of polymers to valuable compounds has attracted worldwide interest for building sustainable societies. First, the current situation of this hot research area has been summarized well in the general introduction of the thesis, which helps readers to become familiar with this topic. Next, the author explains high-yielding production of glucose from cellulose by using an alkali-activated carbon as a catalyst, resulting in a yield of glucose as high as 88%, which is one of the highest yields ever reported. The characterization of carbon materials has indicated that weak acid sites on the catalyst promote the reaction, which is markedly different from reported catalytic systems that require strong acids. In addition, the first catalytic transformation of chitin with retention of N-acetyl groups has been developed. The combination of mechanocatalytic hydrolysis and thermal solvolysis enables the production of N-acetylated monomers in good yields of up to 70%. The catalytic systems demonstrated in this thesis are unique in the fields of both chemistry and chemical engineering, and their high efficiencies can contribute to green and sustainable chemistry in the future. Meanwhile, mechanistic studies based on characterization, thermodynamics, kinetics, and model reactions have also been performed to reveal the roles of catalysts during the reactions. The results will be helpful for readers to design and develop new catalysts and reaction systems.
650
0
$a
Biomass conversion.
$3
885329
650
1 4
$a
Chemistry.
$3
593913
650
2 4
$a
Catalysis.
$3
673438
650
2 4
$a
Organic Chemistry.
$3
673440
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
831604
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-0332-5
950
$a
Chemistry and Materials Science (Springer-11644)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login