Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Compactifying Moduli spaces
~
SpringerLink (Online service)
Compactifying Moduli spaces
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Compactifying Moduli spaces/ by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.].
Author:
Hacking, Paul.
other author:
Laza, Radu.
Published:
Basel :Springer Basel : : 2016.,
Description:
vii, 135 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Moduli theory. -
Online resource:
http://dx.doi.org/10.1007/978-3-0348-0921-4
ISBN:
9783034809214
Compactifying Moduli spaces
Hacking, Paul.
Compactifying Moduli spaces
[electronic resource] /by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.]. - Basel :Springer Basel :2016. - vii, 135 p. :ill., digital ;24 cm. - Advanced courses in mathematics - CRM barcelona,2297-0304. - Advanced courses in mathematics - CRM barcelona..
Foreword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography.
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
ISBN: 9783034809214
Standard No.: 10.1007/978-3-0348-0921-4doiSubjects--Topical Terms:
681816
Moduli theory.
LC Class. No.: QA564
Dewey Class. No.: 516.35
Compactifying Moduli spaces
LDR
:02333nam a2200325 a 4500
001
862650
003
DE-He213
005
20160825140256.0
006
m d
007
cr nn 008maaau
008
170720s2016 sz s 0 eng d
020
$a
9783034809214
$q
(electronic bk.)
020
$a
9783034809207
$q
(paper)
024
7
$a
10.1007/978-3-0348-0921-4
$2
doi
035
$a
978-3-0348-0921-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA564
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
082
0 4
$a
516.35
$2
23
090
$a
QA564
$b
.H121 2016
100
1
$a
Hacking, Paul.
$3
1106150
245
1 0
$a
Compactifying Moduli spaces
$h
[electronic resource] /
$c
by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.].
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2016.
300
$a
vii, 135 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced courses in mathematics - CRM barcelona,
$x
2297-0304
505
0
$a
Foreword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography.
520
$a
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
650
0
$a
Moduli theory.
$3
681816
650
0
$a
Geometry, Algebraic.
$3
580393
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Algebraic Geometry.
$3
670184
700
1
$a
Laza, Radu.
$3
1067964
700
1
$a
Oprea, Dragos.
$3
1106151
700
1
$a
Bini, Gilberto.
$3
1106152
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Advanced courses in mathematics - CRM barcelona.
$3
883724
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0921-4
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login