語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A fixed-point Farrago
~
SpringerLink (Online service)
A fixed-point Farrago
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A fixed-point Farrago/ by Joel H. Shapiro.
作者:
Shapiro, Joel H.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiv, 221 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Fixed point theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-27978-7
ISBN:
9783319279787
A fixed-point Farrago
Shapiro, Joel H.
A fixed-point Farrago
[electronic resource] /by Joel H. Shapiro. - Cham :Springer International Publishing :2016. - xiv, 221 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov-Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov-Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume's ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer's theorem and its application to John Nash's work; the third applies Brouwer's theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll-Nardzewski surrounding fixed points for families of affine maps.
ISBN: 9783319279787
Standard No.: 10.1007/978-3-319-27978-7doiSubjects--Topical Terms:
528441
Fixed point theory.
LC Class. No.: QA329.9
Dewey Class. No.: 515.7248
A fixed-point Farrago
LDR
:02698nam a2200325 a 4500
001
864445
003
DE-He213
005
20161101152552.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319279787
$q
(electronic bk.)
020
$a
9783319279763
$q
(paper)
024
7
$a
10.1007/978-3-319-27978-7
$2
doi
035
$a
978-3-319-27978-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA329.9
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.7248
$2
23
090
$a
QA329.9
$b
.S529 2016
100
1
$a
Shapiro, Joel H.
$3
1109345
245
1 2
$a
A fixed-point Farrago
$h
[electronic resource] /
$c
by Joel H. Shapiro.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiv, 221 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov-Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov-Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
520
$a
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume's ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer's theorem and its application to John Nash's work; the third applies Brouwer's theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll-Nardzewski surrounding fixed points for families of affine maps.
650
0
$a
Fixed point theory.
$3
528441
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Analysis.
$3
669490
650
2 4
$a
Numerical Analysis.
$3
671433
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
881573
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27978-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入