語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Regularity theory for mean field gam...
~
Pimentel, Edgard A.
Regularity theory for mean field games systems
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Regularity theory for mean field games systems/ by Diogo A. Gomes, Edgard A. Pimentel, Vardan Voskanyan.
作者:
Gomes, Diogo A.
其他作者:
Pimentel, Edgard A.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiv, 156 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mean field theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-38934-9
ISBN:
9783319389349
Regularity theory for mean field games systems
Gomes, Diogo A.
Regularity theory for mean field games systems
[electronic resource] /by Diogo A. Gomes, Edgard A. Pimentel, Vardan Voskanyan. - Cham :Springer International Publishing :2016. - xiv, 156 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Preface -- Introduction -- Explicit solutions, special transformations, and further examples -- Estimates for the Hamilton-Jacobi equation -- Estimates for the Transport and Fokker-Planck equations -- The nonlinear adjoint method -- Estimates for MFGs -- A priori bounds for stationary models -- A priori bounds for time-dependent models -- A priori bounds for models with singularities -- Non-local mean-field games - existence -- Local mean-field games - existence -- References -- Index.
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
ISBN: 9783319389349
Standard No.: 10.1007/978-3-319-38934-9doiSubjects--Topical Terms:
783137
Mean field theory.
LC Class. No.: QC174.85.M43
Dewey Class. No.: 530.144
Regularity theory for mean field games systems
LDR
:02538nam a2200337 a 4500
001
867203
003
DE-He213
005
20160914112256.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319389349
$q
(electronic bk.)
020
$a
9783319389325
$q
(paper)
024
7
$a
10.1007/978-3-319-38934-9
$2
doi
035
$a
978-3-319-38934-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.85.M43
072
7
$a
PBUD
$2
bicssc
072
7
$a
MAT011000
$2
bisacsh
072
7
$a
BUS069030
$2
bisacsh
082
0 4
$a
530.144
$2
23
090
$a
QC174.85.M43
$b
G633 2016
100
1
$a
Gomes, Diogo A.
$3
1113876
245
1 0
$a
Regularity theory for mean field games systems
$h
[electronic resource] /
$c
by Diogo A. Gomes, Edgard A. Pimentel, Vardan Voskanyan.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiv, 156 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Preface -- Introduction -- Explicit solutions, special transformations, and further examples -- Estimates for the Hamilton-Jacobi equation -- Estimates for the Transport and Fokker-Planck equations -- The nonlinear adjoint method -- Estimates for MFGs -- A priori bounds for stationary models -- A priori bounds for time-dependent models -- A priori bounds for models with singularities -- Non-local mean-field games - existence -- Local mean-field games - existence -- References -- Index.
520
$a
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
650
0
$a
Mean field theory.
$3
783137
650
0
$a
Game theory.
$3
556918
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Game Theory, Economics, Social and Behav. Sciences.
$3
669497
650
2 4
$a
Economic Theory/Quantitative Economics/Mathematical Methods.
$3
1069071
650
2 4
$a
Systems Theory, Control.
$3
669337
700
1
$a
Pimentel, Edgard A.
$3
1113877
700
1
$a
Voskanyan, Vardan.
$3
1113878
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
883715
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-38934-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入