Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Asymptotic expansion of a partition ...
~
Guionnet, Alice.
Asymptotic expansion of a partition function related to the Sinh-model
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Asymptotic expansion of a partition function related to the Sinh-model/ by Gaetan Borot, Alice Guionnet, Karol K. Kozlowski.
Author:
Borot, Gaetan.
other author:
Guionnet, Alice.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xv, 222 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Functional differential equations - Asymptotic theory. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-33379-3
ISBN:
9783319333793
Asymptotic expansion of a partition function related to the Sinh-model
Borot, Gaetan.
Asymptotic expansion of a partition function related to the Sinh-model
[electronic resource] /by Gaetan Borot, Alice Guionnet, Karol K. Kozlowski. - Cham :Springer International Publishing :2016. - xv, 222 p. :ill., digital ;24 cm. - Mathematical physics studies,0921-3767. - Mathematical physics studies..
Introduction -- Main results and strategy of proof -- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach -- The Riemann-Hilbert approach to the inversion of SN -- The operators WN and U-1N -- Asymptotic analysis of integrals -- Several theorems and properties of use to the analysis -- Proof of Theorem 2.1.1 -- Properties of the N-dependent equilibrium measure -- The Gaussian potential -- Summary of symbols.
ISBN: 9783319333793
Standard No.: 10.1007/978-3-319-33379-3doiSubjects--Topical Terms:
1116483
Functional differential equations
--Asymptotic theory.
LC Class. No.: QA431 / .B67 2016
Dewey Class. No.: 515.45
Asymptotic expansion of a partition function related to the Sinh-model
LDR
:01462nam a2200313 a 4500
001
868697
003
DE-He213
005
20161210054802.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319333793
$q
(electronic bk.)
020
$a
9783319333786
$q
(paper)
024
7
$a
10.1007/978-3-319-33379-3
$2
doi
035
$a
978-3-319-33379-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA431
$b
.B67 2016
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
515.45
$2
23
090
$a
QA431
$b
.B736 2016
100
1
$a
Borot, Gaetan.
$3
1116481
245
1 0
$a
Asymptotic expansion of a partition function related to the Sinh-model
$h
[electronic resource] /
$c
by Gaetan Borot, Alice Guionnet, Karol K. Kozlowski.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xv, 222 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematical physics studies,
$x
0921-3767
505
0
$a
Introduction -- Main results and strategy of proof -- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach -- The Riemann-Hilbert approach to the inversion of SN -- The operators WN and U-1N -- Asymptotic analysis of integrals -- Several theorems and properties of use to the analysis -- Proof of Theorem 2.1.1 -- Properties of the N-dependent equilibrium measure -- The Gaussian potential -- Summary of symbols.
650
0
$a
Functional differential equations
$x
Asymptotic theory.
$3
1116483
650
0
$a
Integral equations
$x
Asymptotic theory.
$3
1073844
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Potential Theory.
$3
672266
650
2 4
$a
Complex Systems.
$3
888664
650
2 4
$a
Mathematical Methods in Physics.
$3
670749
650
2 4
$a
Statistical Physics and Dynamical Systems.
$3
1114011
700
1
$a
Guionnet, Alice.
$3
898168
700
1
$a
Kozlowski, Karol K.
$3
1116482
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Mathematical physics studies.
$3
1062361
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-33379-3
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login