語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representation theory of finite monoids
~
Steinberg, Benjamin.
Representation theory of finite monoids
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Representation theory of finite monoids/ by Benjamin Steinberg.
作者:
Steinberg, Benjamin.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xxiv, 320 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Representations of semigroups. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-43932-7
ISBN:
9783319439327
Representation theory of finite monoids
Steinberg, Benjamin.
Representation theory of finite monoids
[electronic resource] /by Benjamin Steinberg. - Cham :Springer International Publishing :2016. - xxiv, 320 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
Preface -- List of Figures -- Introduction -- I. Elements of Monoid Theory -- 1. The Structure Theory of Finite Monoids -- 2. R-trivial Monoids -- 3. Inverse Monoids -- II. Irreducible Representations -- 4. Recollement: The Theory of an Idempotent -- 5. Irreducible Representations -- III. Character Theory -- 6. Grothendieck Ring -- 7. Characters and Class Functions -- IV. The Representation Theory of Inverse Monoids -- 8. Categories and Groupoids -- 9. The Representation Theory of Inverse Monoids -- V. The Rhodes Radical -- 10. Bi-ideals and R. Steinberg's Theorem -- 11. The Rhodes Radical and Triangularizability -- VI. Applications -- 12. Zeta Functions of Languages and Dynamical Systems -- 13. Transformation Monoids -- 14. Markov Chains -- VII. Advanced Topics -- 15. Self-injective, Frobenius and Symmetric Algebras -- 16. Global Dimension -- 17. Quivers of Monoid Algebras -- 18. Further Developments -- A. Finite Dimensional Algebras -- B. Group Representation Theory -- C. Incidence Algebras and Mobius Inversion -- References -- Index of Notation -- Subject Index.
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford -Munn-Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Mobius inversion.
ISBN: 9783319439327
Standard No.: 10.1007/978-3-319-43932-7doiSubjects--Topical Terms:
902895
Representations of semigroups.
LC Class. No.: QA182
Dewey Class. No.: 512.27
Representation theory of finite monoids
LDR
:03910nam a2200325 a 4500
001
868710
003
DE-He213
005
20161209193140.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319439327
$q
(electronic bk.)
020
$a
9783319439303
$q
(paper)
024
7
$a
10.1007/978-3-319-43932-7
$2
doi
035
$a
978-3-319-43932-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA182
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
082
0 4
$a
512.27
$2
23
090
$a
QA182
$b
.S819 2016
100
1
$a
Steinberg, Benjamin.
$3
888384
245
1 0
$a
Representation theory of finite monoids
$h
[electronic resource] /
$c
by Benjamin Steinberg.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxiv, 320 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
Preface -- List of Figures -- Introduction -- I. Elements of Monoid Theory -- 1. The Structure Theory of Finite Monoids -- 2. R-trivial Monoids -- 3. Inverse Monoids -- II. Irreducible Representations -- 4. Recollement: The Theory of an Idempotent -- 5. Irreducible Representations -- III. Character Theory -- 6. Grothendieck Ring -- 7. Characters and Class Functions -- IV. The Representation Theory of Inverse Monoids -- 8. Categories and Groupoids -- 9. The Representation Theory of Inverse Monoids -- V. The Rhodes Radical -- 10. Bi-ideals and R. Steinberg's Theorem -- 11. The Rhodes Radical and Triangularizability -- VI. Applications -- 12. Zeta Functions of Languages and Dynamical Systems -- 13. Transformation Monoids -- 14. Markov Chains -- VII. Advanced Topics -- 15. Self-injective, Frobenius and Symmetric Algebras -- 16. Global Dimension -- 17. Quivers of Monoid Algebras -- 18. Further Developments -- A. Finite Dimensional Algebras -- B. Group Representation Theory -- C. Incidence Algebras and Mobius Inversion -- References -- Index of Notation -- Subject Index.
520
$a
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford -Munn-Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Mobius inversion.
650
0
$a
Representations of semigroups.
$3
902895
650
0
$a
Monoids.
$3
672503
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Group Theory and Generalizations.
$3
672112
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Combinatorics.
$3
669353
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
881573
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-43932-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入