語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geostatistical methods for reservoir...
~
Soares, Amilcar.
Geostatistical methods for reservoir geophysics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Geostatistical methods for reservoir geophysics/ by Leonardo Azevedo, Amilcar Soares.
作者:
Azevedo, Leonardo.
其他作者:
Soares, Amilcar.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xxvii, 141 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Petroleum - Geology -
電子資源:
http://dx.doi.org/10.1007/978-3-319-53201-1
ISBN:
9783319532011
Geostatistical methods for reservoir geophysics
Azevedo, Leonardo.
Geostatistical methods for reservoir geophysics
[electronic resource] /by Leonardo Azevedo, Amilcar Soares. - Cham :Springer International Publishing :2017. - xxvii, 141 p. :ill., digital ;24 cm. - Advances in oil and gas exploration & production,2509-372X. - Advances in oil and gas exploration & production..
Introduction -- Fundamental geostatistical tools for data integration -- Simulation Models of Physical Phenomena in Earth Sciences -- Integration of geophysical data for reservoir modeling and characterization -- Data integration into geostatistical seismic inversion methodologies -- Afterword.
This book presents a geostatistical framework for data integration into subsurface Earth modeling. It offers extensive geostatistical background information, including detailed descriptions of the main geostatistical tools traditionally used in Earth related sciences to infer the spatial distribution of a given property of interest. This framework is then directly linked with applications in the oil and gas industry and how it can be used as the basis to simultaneously integrate geophysical data (e.g. seismic reflection data) and well-log data into reservoir modeling and characterization. All of the cutting-edge methodologies presented here are first approached from a theoretical point of view and then supplemented by sample applications from real case studies involving different geological scenarios and different challenges. The book offers a valuable resource for students who are interested in learning more about the fascinating world of geostatistics and reservoir modeling and characterization. It offers them a deeper understanding of the main geostatistical concepts and how geostatistics can be used to achieve better data integration and reservoir modeling.
ISBN: 9783319532011
Standard No.: 10.1007/978-3-319-53201-1doiSubjects--Topical Terms:
1141208
Petroleum
--Geology
LC Class. No.: TN870.53
Dewey Class. No.: 622.3382
Geostatistical methods for reservoir geophysics
LDR
:02509nam a2200325 a 4500
001
884652
003
DE-He213
005
20170408075150.0
006
m d
007
cr nn 008maaau
008
180530s2017 gw s 0 eng d
020
$a
9783319532011
$q
(electronic bk.)
020
$a
9783319532004
$q
(paper)
024
7
$a
10.1007/978-3-319-53201-1
$2
doi
035
$a
978-3-319-53201-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TN870.53
072
7
$a
PHVG
$2
bicssc
072
7
$a
SCI032000
$2
bisacsh
082
0 4
$a
622.3382
$2
23
090
$a
TN870.53
$b
.A994 2017
100
1
$a
Azevedo, Leonardo.
$3
1141206
245
1 0
$a
Geostatistical methods for reservoir geophysics
$h
[electronic resource] /
$c
by Leonardo Azevedo, Amilcar Soares.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxvii, 141 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in oil and gas exploration & production,
$x
2509-372X
505
0
$a
Introduction -- Fundamental geostatistical tools for data integration -- Simulation Models of Physical Phenomena in Earth Sciences -- Integration of geophysical data for reservoir modeling and characterization -- Data integration into geostatistical seismic inversion methodologies -- Afterword.
520
$a
This book presents a geostatistical framework for data integration into subsurface Earth modeling. It offers extensive geostatistical background information, including detailed descriptions of the main geostatistical tools traditionally used in Earth related sciences to infer the spatial distribution of a given property of interest. This framework is then directly linked with applications in the oil and gas industry and how it can be used as the basis to simultaneously integrate geophysical data (e.g. seismic reflection data) and well-log data into reservoir modeling and characterization. All of the cutting-edge methodologies presented here are first approached from a theoretical point of view and then supplemented by sample applications from real case studies involving different geological scenarios and different challenges. The book offers a valuable resource for students who are interested in learning more about the fascinating world of geostatistics and reservoir modeling and characterization. It offers them a deeper understanding of the main geostatistical concepts and how geostatistics can be used to achieve better data integration and reservoir modeling.
650
0
$a
Petroleum
$x
Geology
$x
Statistical methods.
$3
1141208
650
0
$a
Petroleum
$x
Geology
$x
Mathematical models.
$3
786396
650
0
$a
Prospecting
$x
Geophysical methods.
$3
903634
650
0
$a
Gas reservoirs.
$3
904475
650
0
$a
Oil industries
$v
Statistics.
$3
1141209
650
0
$a
Gas industry
$v
Statistics.
$3
1141210
650
1 4
$a
Earth Sciences.
$3
683879
650
2 4
$a
Geophysics/Geodesy.
$3
668510
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
782247
650
2 4
$a
Quantitative Geology.
$3
682376
650
2 4
$a
Economic Geology.
$3
670533
700
1
$a
Soares, Amilcar.
$3
679443
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Advances in oil and gas exploration & production.
$3
1141207
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-53201-1
950
$a
Earth and Environmental Science (Springer-11646)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入