語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real-time recursive hyperspectral sa...
~
Chang, Chein-I.
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Real-time recursive hyperspectral sample and band processing/ by Chein-I Chang.
其他題名:
algorithm architecture and implementation /
作者:
Chang, Chein-I.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xxiii, 690 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Signal processing - Digital techniques -
電子資源:
http://dx.doi.org/10.1007/978-3-319-45171-8
ISBN:
9783319451718
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
Chang, Chein-I.
Real-time recursive hyperspectral sample and band processing
algorithm architecture and implementation /[electronic resource] :by Chein-I Chang. - Cham :Springer International Publishing :2017. - xxiii, 690 p. :ill. (some col.), digital ;24 cm.
Overview and Introduction -- PART I: Fundamentals -- Simplex Volume Calculation -- Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing -- Target-Specified Virtual Dimesnionality -- PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization -- Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection -- PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Recursive Hyperspectral Sample Processing of Automatic Target Generation Process -- Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection -- Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation -- Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm -- Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm -- PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Constrained Energy Minimization -- Recursive Hyperspectral Band Processing of Anomly Detection -- Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Automatic Target Generation Process -- Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection -- Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis -- Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index -- Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index -- Conclusions -- Glossary -- Appendix A -- References -- Index.
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author's books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
ISBN: 9783319451718
Standard No.: 10.1007/978-3-319-45171-8doiSubjects--Topical Terms:
561188
Signal processing
--Digital techniques
LC Class. No.: TK5102.9
Dewey Class. No.: 621.3822
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
LDR
:03920nam a2200337 a 4500
001
884757
003
DE-He213
005
20171103094259.0
006
m d
007
cr nn 008maaau
008
180530s2017 gw s 0 eng d
020
$a
9783319451718
$q
(electronic bk.)
020
$a
9783319451701
$q
(paper)
024
7
$a
10.1007/978-3-319-45171-8
$2
doi
035
$a
978-3-319-45171-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5102.9
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
621.3822
$2
23
090
$a
TK5102.9
$b
.C456 2017
100
1
$a
Chang, Chein-I.
$3
1059625
245
1 0
$a
Real-time recursive hyperspectral sample and band processing
$h
[electronic resource] :
$b
algorithm architecture and implementation /
$c
by Chein-I Chang.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxiii, 690 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Overview and Introduction -- PART I: Fundamentals -- Simplex Volume Calculation -- Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing -- Target-Specified Virtual Dimesnionality -- PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization -- Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection -- PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Recursive Hyperspectral Sample Processing of Automatic Target Generation Process -- Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection -- Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation -- Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm -- Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm -- PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Constrained Energy Minimization -- Recursive Hyperspectral Band Processing of Anomly Detection -- Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Automatic Target Generation Process -- Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection -- Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis -- Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index -- Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index -- Conclusions -- Glossary -- Appendix A -- References -- Index.
520
$a
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author's books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
650
0
$a
Signal processing
$x
Digital techniques
$x
Data processing.
$3
561188
650
0
$a
Signal processing
$x
Digital techniques
$x
Mathematics.
$3
557851
650
1 4
$a
Engineering.
$3
561152
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Biometrics.
$3
677095
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45171-8
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入