語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational diffusion MRI = MICCAI...
~
SpringerLink (Online service)
Computational diffusion MRI = MICCAI Workshop, Athens, Greece, October 2016 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational diffusion MRI/ edited by Andrea Fuster ... [et al.].
其他題名:
MICCAI Workshop, Athens, Greece, October 2016 /
其他作者:
Fuster, Andrea.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xi, 212 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Diffusion magnetic resonance imaging - Congresses. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-54130-3
ISBN:
9783319541303
Computational diffusion MRI = MICCAI Workshop, Athens, Greece, October 2016 /
Computational diffusion MRI
MICCAI Workshop, Athens, Greece, October 2016 /[electronic resource] :edited by Andrea Fuster ... [et al.]. - Cham :Springer International Publishing :2017. - xi, 212 p. :ill., digital ;24 cm. - Mathematics and visualization,1612-3786. - Mathematics and visualization..
The MR Physics of Advanced Diffusion Imaging: Matt Hall -- Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI and q-Space Metrics: M. Pizzolato et al -- Regularized Dictionary Learning with Robust Sparsity Fitting for Compressed Sensing Multishell HARDI: K. Gupta et al -- Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets: Jian Zhang et al -- Diffusion MRI Signal Augmentation - From Single Shell to Multi Shell with Deep Learning: S. Koppers et al -- Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity: R.H.J. Fick et al -- Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner: L.S. Kakkar et al -- Groupwise Structural Parcellation of the Cortex: A Sound Approach Based on Logistic Models: G. Gallardo et al -- Robust Construction of Diffusion MRI Atlases with Correction for Inter-Subject Fiber Dispersion: Z. Yang et al -- Parcellation of Human Amygdala Subfields Using Orientation Distribution Function and Spectral K-means Clustering: Q. Wen et al -- Sparse Representation for White Matter Fiber Compression and Calculation of Inter-Fiber Similarity: G. Zimmerman Moreno et al -- An Unsupervised Group Average Cortical Parcellation using Diffusion MRI to Probe Cytoarchitecture: T. Ganepola et al -- Using multiple Diffusion MRI Measures to Predict Alzheimer's Disease with a TV-L1 Prior: J.E. Villalon-Reina et al -- Accurate Diagnosis of SWEDD vs. Parkinson Using Microstructural Changes of Cingulum Bundle: Track-Specific Analysis: F. Rahmani et al -- Colocalization of Functional Activity and Neurite Density within Cortical Areas: A. Teillac et al -- Comparison of Biomarkers in Transgenic Alzheimer Rats Using Multi-shell Diffusion MRI: R.H.J. Fick -- Working Memory Function in Recent-onset Schizophrenia Patients Associated with White Matter Microstructure: Connectometry Approach: M. Dolatshahi et al.
This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity, while also sharing new perspectives and insights on the latest research challenges for those currently working in the field. Over the last decade, interest in diffusion MRI has virtually exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into the clinic, while new processing methods are essential to addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference. These papers from the 2016 MICCAI Workshop "Computational Diffusion MRI" - which was intended to provide a snapshot of the latest developments within the highly active and growing field of diffusion MR - cover a wide range of topics, from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms and applications in neuroscientific studies and clinical practice. The contributions include rigorous mathematical derivations, a wealth of rich, full-color visualizations, and biologically or clinically relevant results. As such, they will be of interest to researchers and practitioners in the fields of computer science, MR physics, and applied mathematics.
ISBN: 9783319541303
Standard No.: 10.1007/978-3-319-54130-3doiSubjects--Topical Terms:
1108187
Diffusion magnetic resonance imaging
--Congresses.
LC Class. No.: RC386.6.M34
Dewey Class. No.: 616.07548
Computational diffusion MRI = MICCAI Workshop, Athens, Greece, October 2016 /
LDR
:04617nam a2200325 a 4500
001
885523
003
DE-He213
005
20170512142700.0
006
m d
007
cr nn 008maaau
008
180530s2017 gw s 0 eng d
020
$a
9783319541303
$q
(electronic bk.)
020
$a
9783319541297
$q
(paper)
024
7
$a
10.1007/978-3-319-54130-3
$2
doi
035
$a
978-3-319-54130-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC386.6.M34
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
616.07548
$2
23
090
$a
RC386.6.M34
$b
C738 2017
245
0 0
$a
Computational diffusion MRI
$h
[electronic resource] :
$b
MICCAI Workshop, Athens, Greece, October 2016 /
$c
edited by Andrea Fuster ... [et al.].
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xi, 212 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematics and visualization,
$x
1612-3786
505
0
$a
The MR Physics of Advanced Diffusion Imaging: Matt Hall -- Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI and q-Space Metrics: M. Pizzolato et al -- Regularized Dictionary Learning with Robust Sparsity Fitting for Compressed Sensing Multishell HARDI: K. Gupta et al -- Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets: Jian Zhang et al -- Diffusion MRI Signal Augmentation - From Single Shell to Multi Shell with Deep Learning: S. Koppers et al -- Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity: R.H.J. Fick et al -- Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner: L.S. Kakkar et al -- Groupwise Structural Parcellation of the Cortex: A Sound Approach Based on Logistic Models: G. Gallardo et al -- Robust Construction of Diffusion MRI Atlases with Correction for Inter-Subject Fiber Dispersion: Z. Yang et al -- Parcellation of Human Amygdala Subfields Using Orientation Distribution Function and Spectral K-means Clustering: Q. Wen et al -- Sparse Representation for White Matter Fiber Compression and Calculation of Inter-Fiber Similarity: G. Zimmerman Moreno et al -- An Unsupervised Group Average Cortical Parcellation using Diffusion MRI to Probe Cytoarchitecture: T. Ganepola et al -- Using multiple Diffusion MRI Measures to Predict Alzheimer's Disease with a TV-L1 Prior: J.E. Villalon-Reina et al -- Accurate Diagnosis of SWEDD vs. Parkinson Using Microstructural Changes of Cingulum Bundle: Track-Specific Analysis: F. Rahmani et al -- Colocalization of Functional Activity and Neurite Density within Cortical Areas: A. Teillac et al -- Comparison of Biomarkers in Transgenic Alzheimer Rats Using Multi-shell Diffusion MRI: R.H.J. Fick -- Working Memory Function in Recent-onset Schizophrenia Patients Associated with White Matter Microstructure: Connectometry Approach: M. Dolatshahi et al.
520
$a
This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity, while also sharing new perspectives and insights on the latest research challenges for those currently working in the field. Over the last decade, interest in diffusion MRI has virtually exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into the clinic, while new processing methods are essential to addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference. These papers from the 2016 MICCAI Workshop "Computational Diffusion MRI" - which was intended to provide a snapshot of the latest developments within the highly active and growing field of diffusion MR - cover a wide range of topics, from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms and applications in neuroscientific studies and clinical practice. The contributions include rigorous mathematical derivations, a wealth of rich, full-color visualizations, and biologically or clinically relevant results. As such, they will be of interest to researchers and practitioners in the fields of computer science, MR physics, and applied mathematics.
650
0
$a
Diffusion magnetic resonance imaging
$v
Congresses.
$3
1108187
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Mathematical and Computational Biology.
$3
786706
650
2 4
$a
Visualization.
$3
574210
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
700
1
$a
Fuster, Andrea.
$3
1108186
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Mathematics and visualization.
$3
791868
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-54130-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入