語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Algebra 2 = linear algebra, Galois t...
~
Lal, Ramji.
Algebra 2 = linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Algebra 2/ by Ramji Lal.
其他題名:
linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /
作者:
Lal, Ramji.
出版者:
Singapore :Springer Singapore : : 2017.,
面頁冊數:
xviii, 432 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Algebra. -
電子資源:
http://dx.doi.org/10.1007/978-981-10-4256-0
ISBN:
9789811042560
Algebra 2 = linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /
Lal, Ramji.
Algebra 2
linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /[electronic resource] :by Ramji Lal. - Singapore :Springer Singapore :2017. - xviii, 432 p. :ill., digital ;24 cm. - Infosys science foundation series,2363-6149. - Infosys science foundation series..
Chapter 1. Vector Space -- Chapter 2. Matrices and Linear Equations -- Chapter 3. Linear Transformations -- Chapter 4. Inner Product Space -- Chapter 5. Determinants and Forms -- Chapter 6. Canonical Forms, Jordan and Rational Forms -- Chapter 7. General Linear Algebra -- Chapter 8. Field Theory, Galois Theory -- Chapter 9. Representation Theory of Finite Groups -- Chapter 10. Group Extensions and Schur Multiplier.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
ISBN: 9789811042560
Standard No.: 10.1007/978-981-10-4256-0doiSubjects--Topical Terms:
579870
Algebra.
LC Class. No.: QA152.3
Dewey Class. No.: 512
Algebra 2 = linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /
LDR
:02401nam a2200325 a 4500
001
885539
003
DE-He213
005
20170505084934.0
006
m d
007
cr nn 008maaau
008
180530s2017 si s 0 eng d
020
$a
9789811042560
$q
(electronic bk.)
020
$a
9789811042553
$q
(paper)
024
7
$a
10.1007/978-981-10-4256-0
$2
doi
035
$a
978-981-10-4256-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA152.3
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002050
$2
bisacsh
082
0 4
$a
512
$2
23
090
$a
QA152.3
$b
.L193 2017
100
1
$a
Lal, Ramji.
$3
1142778
245
1 0
$a
Algebra 2
$h
[electronic resource] :
$b
linear algebra, Galois theory, representation theory, group extensions and Schur multiplier /
$c
by Ramji Lal.
260
$a
Singapore :
$c
2017.
$b
Springer Singapore :
$b
Imprint: Springer,
300
$a
xviii, 432 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Infosys science foundation series,
$x
2363-6149
505
0
$a
Chapter 1. Vector Space -- Chapter 2. Matrices and Linear Equations -- Chapter 3. Linear Transformations -- Chapter 4. Inner Product Space -- Chapter 5. Determinants and Forms -- Chapter 6. Canonical Forms, Jordan and Rational Forms -- Chapter 7. General Linear Algebra -- Chapter 8. Field Theory, Galois Theory -- Chapter 9. Representation Theory of Finite Groups -- Chapter 10. Group Extensions and Schur Multiplier.
520
$a
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
650
0
$a
Algebra.
$2
gtt
$3
579870
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
672090
650
2 4
$a
Associative Rings and Algebras.
$3
672306
650
2 4
$a
Commutative Rings and Algebras.
$3
672054
650
2 4
$a
Non-associative Rings and Algebras.
$3
672285
650
2 4
$a
Group Theory and Generalizations.
$3
672112
650
2 4
$a
Number Theory.
$3
672023
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Infosys science foundation series.
$3
1065162
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-4256-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入