語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Classical and quantum dynamics = fro...
~
Reuter, Martin.
Classical and quantum dynamics = from classical paths to path integrals /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Classical and quantum dynamics/ by Walter Dittrich, Martin Reuter.
其他題名:
from classical paths to path integrals /
作者:
Dittrich, Walter.
其他作者:
Reuter, Martin.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xvi, 489 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Quantum theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-58298-6
ISBN:
9783319582986
Classical and quantum dynamics = from classical paths to path integrals /
Dittrich, Walter.
Classical and quantum dynamics
from classical paths to path integrals /[electronic resource] :by Walter Dittrich, Martin Reuter. - 5th ed. - Cham :Springer International Publishing :2017. - xvi, 489 p. :ill., digital ;24 cm.
Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points -- Canonical Transformations -- The Hamilton-Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincare Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern-Simons Mechanics -- Semiclassical Quantization -- The "Maslov Anomaly" for the Harmonic Oscillator -- Maslov Anomaly and the Morse Index Theorem -- Berry's Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Appendix -- Solutions -- Index.
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger's proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
ISBN: 9783319582986
Standard No.: 10.1007/978-3-319-58298-6doiSubjects--Topical Terms:
568041
Quantum theory.
LC Class. No.: QC174.12
Dewey Class. No.: 530.12
Classical and quantum dynamics = from classical paths to path integrals /
LDR
:03608nam a2200325 a 4500
001
885659
003
DE-He213
005
20170513150938.0
006
m d
007
cr nn 008maaau
008
180530s2017 gw s 0 eng d
020
$a
9783319582986
$q
(electronic bk.)
020
$a
9783319582979
$q
(paper)
024
7
$a
10.1007/978-3-319-58298-6
$2
doi
035
$a
978-3-319-58298-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.12
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
530.12
$2
23
090
$a
QC174.12
$b
.D617 2017
100
1
$a
Dittrich, Walter.
$3
1103356
245
1 0
$a
Classical and quantum dynamics
$h
[electronic resource] :
$b
from classical paths to path integrals /
$c
by Walter Dittrich, Martin Reuter.
250
$a
5th ed.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvi, 489 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points -- Canonical Transformations -- The Hamilton-Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincare Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern-Simons Mechanics -- Semiclassical Quantization -- The "Maslov Anomaly" for the Harmonic Oscillator -- Maslov Anomaly and the Morse Index Theorem -- Berry's Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Appendix -- Solutions -- Index.
520
$a
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger's proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
650
0
$a
Quantum theory.
$3
568041
650
0
$a
Physics.
$3
564049
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Field theory (Physics)
$3
672532
650
0
$a
Nuclear physics.
$3
591618
650
2 4
$a
Quantum Physics.
$3
671960
650
2 4
$a
Classical and Continuum Physics.
$3
1141497
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
786649
650
2 4
$a
Particle and Nuclear Physics.
$3
769262
700
1
$a
Reuter, Martin.
$3
1066462
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-58298-6
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入