語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary wind turbine placement ...
~
SpringerLink (Online service)
Evolutionary wind turbine placement optimization with geographical constraints
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Evolutionary wind turbine placement optimization with geographical constraints/ by Daniel Luckehe.
作者:
Luckehe, Daniel.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2017.,
面頁冊數:
xxii, 195 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Wind power - Research. -
電子資源:
http://dx.doi.org/10.1007/978-3-658-18465-0
ISBN:
9783658184650$q(electronic bk.)
Evolutionary wind turbine placement optimization with geographical constraints
Luckehe, Daniel.
Evolutionary wind turbine placement optimization with geographical constraints
[electronic resource] /by Daniel Luckehe. - Wiesbaden :Springer Fachmedien Wiesbaden :2017. - xxii, 195 p. :ill., digital ;24 cm.
Solving Optimization Problems -- Wind Prediction Model -- Geographical Planning Scenarios -- Constrained Placement Optimization -- Constraint Handling with Penalty Functions -- Advanced Evolutionary Heuristics.
Daniel Luckehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situations. Advanced evolutionary heuristics for the turbine placement optimization create not only highly optimized solutions but also significantly different solutions to give decision-makers optimal choices. As a matter of fact, wind turbines play an important role towards green energy supply. An optimal location is essential to achieve the highest possible energy efficiency. Contents Solving Optimization Problems Wind Prediction Model Geographical Planning Scenarios Constrained Placement Optimization Constraint Handling with Penalty Functions Advanced Evolutionary Heuristics Target Groups Lecturers and students of computer science, especially in optimization methods and renewable energies Natural scientists interested in advanced heuristics The Author Dr. Daniel Luckehe defended his PhD thesis in the PhD program "System Integration of Renewable Energy" at the Carl von Ossietzky University in Oldenburg, Germany. As postdoctoral researcher he conducts research in computational health informatics at the Leibnitz University in Hanover, Germany.
ISBN: 9783658184650$q(electronic bk.)
Standard No.: 10.1007/978-3-658-18465-0doiSubjects--Topical Terms:
1143159
Wind power
--Research.
LC Class. No.: TJ820
Dewey Class. No.: 621.45
Evolutionary wind turbine placement optimization with geographical constraints
LDR
:02548nam a2200325 a 4500
001
885774
003
DE-He213
005
20170529163009.0
006
m d
007
cr nn 008maaau
008
180531s2017 gw s 0 eng d
020
$a
9783658184650$q(electronic bk.)
020
$a
9783658184643$q(paper)
024
7
$a
10.1007/978-3-658-18465-0
$2
doi
035
$a
978-3-658-18465-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ820
072
7
$a
UMA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM018000
$2
bisacsh
082
0 4
$a
621.45
$2
23
090
$a
TJ820
$b
.L941 2017
100
1
$a
Luckehe, Daniel.
$3
1143158
245
1 0
$a
Evolutionary wind turbine placement optimization with geographical constraints
$h
[electronic resource] /
$c
by Daniel Luckehe.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2017.
300
$a
xxii, 195 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Solving Optimization Problems -- Wind Prediction Model -- Geographical Planning Scenarios -- Constrained Placement Optimization -- Constraint Handling with Penalty Functions -- Advanced Evolutionary Heuristics.
520
$a
Daniel Luckehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situations. Advanced evolutionary heuristics for the turbine placement optimization create not only highly optimized solutions but also significantly different solutions to give decision-makers optimal choices. As a matter of fact, wind turbines play an important role towards green energy supply. An optimal location is essential to achieve the highest possible energy efficiency. Contents Solving Optimization Problems Wind Prediction Model Geographical Planning Scenarios Constrained Placement Optimization Constraint Handling with Penalty Functions Advanced Evolutionary Heuristics Target Groups Lecturers and students of computer science, especially in optimization methods and renewable energies Natural scientists interested in advanced heuristics The Author Dr. Daniel Luckehe defended his PhD thesis in the PhD program "System Integration of Renewable Energy" at the Carl von Ossietzky University in Oldenburg, Germany. As postdoctoral researcher he conducts research in computational health informatics at the Leibnitz University in Hanover, Germany.
650
0
$a
Wind power
$x
Research.
$3
1143159
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Computing Methodologies.
$3
640210
650
2 4
$a
Sustainable Development.
$3
679787
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
669335
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-18465-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入