語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Smooth Bezier surfaces over unstruct...
~
Bercovier, Michel.
Smooth Bezier surfaces over unstructured quadrilateral meshes
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Smooth Bezier surfaces over unstructured quadrilateral meshes/ by Michel Bercovier, Tanya Matskewich.
作者:
Bercovier, Michel.
其他作者:
Matskewich, Tanya.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xx, 192 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Finite element method. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-63841-6
ISBN:
9783319638416
Smooth Bezier surfaces over unstructured quadrilateral meshes
Bercovier, Michel.
Smooth Bezier surfaces over unstructured quadrilateral meshes
[electronic resource] /by Michel Bercovier, Tanya Matskewich. - Cham :Springer International Publishing :2017. - xx, 192 p. :ill., digital ;24 cm. - Lecture notes of the Unione Matematica Italiana,221862-9113 ;. - Lecture notes of the Unione Matematica Italiana ;16..
Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.
Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM) The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bezier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bezier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.
ISBN: 9783319638416
Standard No.: 10.1007/978-3-319-63841-6doiSubjects--Topical Terms:
528332
Finite element method.
LC Class. No.: TA347.F5
Dewey Class. No.: 518.25
Smooth Bezier surfaces over unstructured quadrilateral meshes
LDR
:02454nam a2200325 a 4500
001
905291
003
DE-He213
005
20180426145700.0
006
m d
007
cr nn 008maaau
008
190308s2017 gw s 0 eng d
020
$a
9783319638416
$q
(electronic bk.)
020
$a
9783319638409
$q
(paper)
024
7
$a
10.1007/978-3-319-63841-6
$2
doi
035
$a
978-3-319-63841-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.F5
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
518.25
$2
23
090
$a
TA347.F5
$b
B486 2017
100
1
$a
Bercovier, Michel.
$3
792288
245
1 0
$a
Smooth Bezier surfaces over unstructured quadrilateral meshes
$h
[electronic resource] /
$c
by Michel Bercovier, Tanya Matskewich.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xx, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
22
505
0
$a
Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.
520
$a
Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM) The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bezier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bezier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.
650
0
$a
Finite element method.
$3
528332
650
0
$a
Quadrilaterals.
$3
1172345
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Geometry.
$3
579899
700
1
$a
Matskewich, Tanya.
$3
1172344
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Lecture notes of the Unione Matematica Italiana ;
$v
16.
$3
1065259
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-63841-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入