語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Differential geometry = connections,...
~
Tu, Loring W.
Differential geometry = connections, curvature, and characteristic classes /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Differential geometry/ by Loring W. Tu.
其他題名:
connections, curvature, and characteristic classes /
作者:
Tu, Loring W.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xvii, 347 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Geometry, Differential. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-55084-8
ISBN:
9783319550848
Differential geometry = connections, curvature, and characteristic classes /
Tu, Loring W.
Differential geometry
connections, curvature, and characteristic classes /[electronic resource] :by Loring W. Tu. - Cham :Springer International Publishing :2017. - xvii, 347 p. :ill. (some col.), digital ;24 cm. - Graduate texts in mathematics,2750072-5285 ;. - Graduate texts in mathematics ;253..
Preface -- Chapter 1. Curvature and Vector Fields -- 1. Riemannian Manifolds -- 2. Curves -- 3. Surfaces in Space -- 4. Directional Derivative in Euclidean Space -- 5. The Shape Operator -- 6. Affine Connections -- 7. Vector Bundles -- 8. Gauss's Theorema Egregium -- 9. Generalizations to Hypersurfaces in Rn+1 -- Chapter 2. Curvature and Differential Forms -- 10. Connections on a Vector Bundle -- 11. Connection, Curvature, and Torsion Forms -- 12. The Theorema Egregium Using Forms -- Chapter 3. Geodesics -- 13. More on Affine Connections -- 14. Geodesics -- 15. Exponential Maps -- 16. Distance and Volume -- 17. The Gauss-Bonnet Theorem -- Chapter 4. Tools from Algebra and Topology -- 18. The Tensor Product and the Dual Module -- 19. The Exterior Power -- 20. Operations on Vector Bundles -- 21. Vector-Valued Forms -- Chapter 5. Vector Bundles and Characteristic Classes -- 22. Connections and Curvature Again -- 23. Characteristic Classes -- 24. Pontrjagin Classes -- 25. The Euler Class and Chern Classes -- 26. Some Applications of Characteristic Classes -- Chapter 6. Principal Bundles and Characteristic Classes -- 27. Principal Bundles -- 28. Connections on a Principal Bundle -- 29. Horizontal Distributions on a Frame Bundle -- 30. Curvature on a Principal Bundle -- 31. Covariant Derivative on a Principal Bundle -- 32. Character Classes of Principal Bundles -- A. Manifolds -- B. Invariant Polynomials -- Hints and Solutions to Selected End-of-Section Problems -- List of Notations -- References -- Index.
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader's understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
ISBN: 9783319550848
Standard No.: 10.1007/978-3-319-55084-8doiSubjects--Topical Terms:
527830
Geometry, Differential.
LC Class. No.: QA641
Dewey Class. No.: 516.36
Differential geometry = connections, curvature, and characteristic classes /
LDR
:04796nam a2200325 a 4500
001
905816
003
DE-He213
005
20180117150608.0
006
m d
007
cr nn 008maaau
008
190308s2017 gw s 0 eng d
020
$a
9783319550848
$q
(electronic bk.)
020
$a
9783319550824
$q
(paper)
024
7
$a
10.1007/978-3-319-55084-8
$2
doi
035
$a
978-3-319-55084-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA641
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
082
0 4
$a
516.36
$2
23
090
$a
QA641
$b
.T883 2017
100
1
$a
Tu, Loring W.
$3
678136
245
1 0
$a
Differential geometry
$h
[electronic resource] :
$b
connections, curvature, and characteristic classes /
$c
by Loring W. Tu.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvii, 347 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Graduate texts in mathematics,
$x
0072-5285 ;
$v
275
505
0
$a
Preface -- Chapter 1. Curvature and Vector Fields -- 1. Riemannian Manifolds -- 2. Curves -- 3. Surfaces in Space -- 4. Directional Derivative in Euclidean Space -- 5. The Shape Operator -- 6. Affine Connections -- 7. Vector Bundles -- 8. Gauss's Theorema Egregium -- 9. Generalizations to Hypersurfaces in Rn+1 -- Chapter 2. Curvature and Differential Forms -- 10. Connections on a Vector Bundle -- 11. Connection, Curvature, and Torsion Forms -- 12. The Theorema Egregium Using Forms -- Chapter 3. Geodesics -- 13. More on Affine Connections -- 14. Geodesics -- 15. Exponential Maps -- 16. Distance and Volume -- 17. The Gauss-Bonnet Theorem -- Chapter 4. Tools from Algebra and Topology -- 18. The Tensor Product and the Dual Module -- 19. The Exterior Power -- 20. Operations on Vector Bundles -- 21. Vector-Valued Forms -- Chapter 5. Vector Bundles and Characteristic Classes -- 22. Connections and Curvature Again -- 23. Characteristic Classes -- 24. Pontrjagin Classes -- 25. The Euler Class and Chern Classes -- 26. Some Applications of Characteristic Classes -- Chapter 6. Principal Bundles and Characteristic Classes -- 27. Principal Bundles -- 28. Connections on a Principal Bundle -- 29. Horizontal Distributions on a Frame Bundle -- 30. Curvature on a Principal Bundle -- 31. Covariant Derivative on a Principal Bundle -- 32. Character Classes of Principal Bundles -- A. Manifolds -- B. Invariant Polynomials -- Hints and Solutions to Selected End-of-Section Problems -- List of Notations -- References -- Index.
520
$a
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader's understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
650
0
$a
Geometry, Differential.
$3
527830
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Differential Geometry.
$3
671118
650
2 4
$a
Algebraic Geometry.
$3
670184
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Graduate texts in mathematics ;
$v
253.
$3
774333
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-55084-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入