語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Experimental Examination of Combu...
~
Ghamari, Mohsen.
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives./
作者:
Ghamari, Mohsen.
面頁冊數:
1 online resource (125 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355243697
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives.
Ghamari, Mohsen.
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives.
- 1 online resource (125 pages)
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355243697Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives.
LDR
:03878ntm a2200385Ki 4500
001
908641
005
20180330125240.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9780355243697
035
$a
(MiAaPQ)AAI10190426
035
$a
(MiAaPQ)uiowa:14658
035
$a
AAI10190426
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Ghamari, Mohsen.
$3
1178874
245
1 3
$a
An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives.
264
0
$c
2016
300
$a
1 online resource (125 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Adviser: Albert Ratner.
502
$a
Thesis (Ph.D.)
$c
The University of Iowa
$d
2016.
504
$a
Includes bibliographical references
520
$a
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate.
520
$a
In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated.
520
$a
Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Engineering.
$3
561152
650
4
$a
Energy.
$3
784773
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0537
690
$a
0791
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Iowa.
$b
Mechanical Engineering.
$3
845658
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10190426
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入