語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Condensation and Wetting Dynamics on...
~
Olceroglu, Emre.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces./
作者:
Olceroglu, Emre.
面頁冊數:
1 online resource (152 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Contained By:
Dissertation Abstracts International78-07B(E).
標題:
Engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369568851
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces.
Olceroglu, Emre.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces.
- 1 online resource (152 pages)
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369568851Subjects--Topical Terms:
561152
Engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces.
LDR
:05352ntm a2200385Ki 4500
001
908660
005
20180330125240.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369568851
035
$a
(MiAaPQ)AAI10256245
035
$a
(MiAaPQ)drexel:10946
035
$a
AAI10256245
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Olceroglu, Emre.
$3
1178901
245
1 0
$a
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces.
264
0
$c
2017
300
$a
1 online resource (152 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
500
$a
Adviser: Matthew McCarthy.
502
$a
Thesis (Ph.D.)
$c
Drexel University
$d
2017.
504
$a
Includes bibliographical references
520
$a
Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces.
520
$a
A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously.
520
$a
Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for condensation.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Engineering.
$3
561152
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Nanotechnology.
$3
557660
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0537
690
$a
0548
690
$a
0652
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Drexel University.
$b
Mechanical Engineering and Mechanics.
$3
1148566
773
0
$t
Dissertation Abstracts International
$g
78-07B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10256245
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入