Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Generation, Analysis and Characteriz...
~
Trifale, Ninad T.
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials.
Record Type:
Language materials, manuscript : Monograph/item
Title/Author:
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials./
Author:
Trifale, Ninad T.
Description:
1 online resource (128 pages)
Notes:
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Contained By:
Dissertation Abstracts International79-03B(E).
Subject:
Mechanical engineering. -
Online resource:
click for full text (PQDT)
ISBN:
9780355257113
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials.
Trifale, Ninad T.
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials.
- 1 online resource (128 pages)
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355257113Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials.
LDR
:03768ntm a2200385Ki 4500
001
908714
005
20180330125241.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355257113
035
$a
(MiAaPQ)AAI10599263
035
$a
(MiAaPQ)purdue:21514
035
$a
AAI10599263
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Trifale, Ninad T.
$3
1178976
245
1 0
$a
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials.
264
0
$c
2017
300
$a
1 online resource (128 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
500
$a
Advisers: Eric A. Nauman; Kazuaki Yazawa.
502
$a
Thesis (Ph.D.)
$c
Purdue University
$d
2017.
504
$a
Includes bibliographical references
520
$a
A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed.
520
$a
A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability.
520
$a
Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Materials science.
$3
557839
650
4
$a
Mechanics.
$3
527684
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0794
690
$a
0346
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Purdue University.
$b
Mechanical Engineering.
$3
845672
773
0
$t
Dissertation Abstracts International
$g
79-03B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10599263
$z
click for full text (PQDT)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login